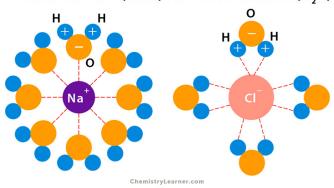
Session 4 Worksheet

Physical Properties and Intermolecular Forces: A Better, Comprehensive Guide

Increasing Interaction Strength		
Physical Properties		
For this class we are talking about and		
Intermolecular Forces		
lon-lon:		

Typically observed in _____ and _____

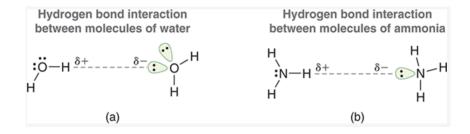
Both mp and bp are _______


Covalent Bonds:

- An intermolecular force _____ the compound itself
- Considered _____ because of the _____ of electrons

Ion-Dipole:

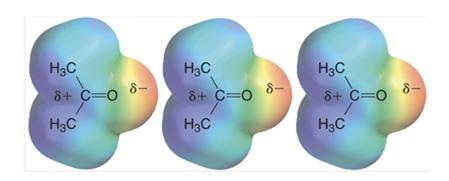
• The interaction of a and the charge of an


Sodium Chloride (NaCl) Dissolved in Water (H₂O)

Hydrogen Bonding:

• Not technically a "bond", more like another form of attraction

A hydrogen is connected to an _____(____)


How does this affect bp & mp?

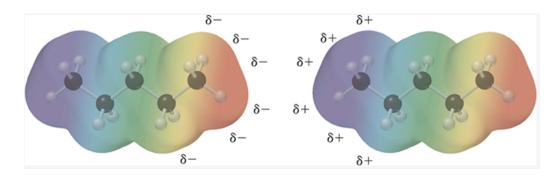
Ethanol has a higher bp because it has a hydrogen bonded to, versus Methoxymethane, which only has a _____bond

Notice how as more hydrogens are bonded to the Nitrogen atom, the _____ the bp gets

Dipole-Dipole:

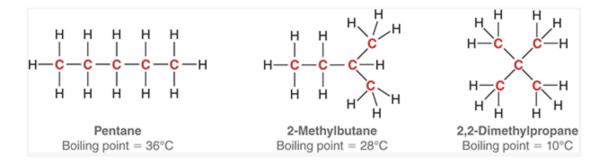
The resulting ______ between two dipoles

How does this affect bp and mp?


Isobutylene lacks	, so the mp and bp are much lowe
compared to Acetone, which has	

London Dispersion Forces:

A consideration of the _____ and ____ charges on a whole molecule, rather than the entire atom

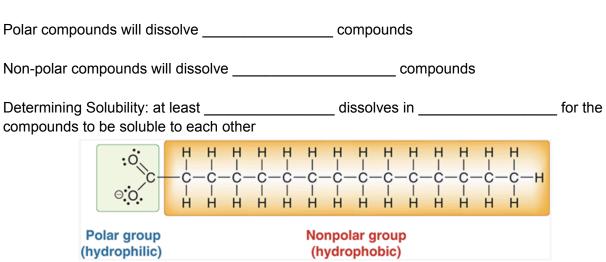

Usually observed in large _____

This force is transient, or _____

How does this affect bp and mp?

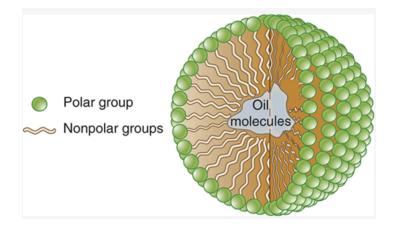
The _____ the carbon chain, the ____ higher the bp

The more ______, the ______ the bp


Melting Point

We've been talking about boiling point up until here; however, melting point properties have different requirements

• When it comes to branching, **generally,** the most branched structure will have a

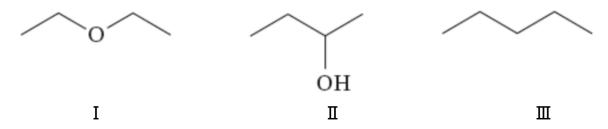

_____ melting point (there are exceptions)

This is largely due to	and the ability of the molecules to
Boiling and Melting Points For Som	e Isomers of Heptane (C ₇ H ₁₆)
boiling point	melting point
98°C highest	-90°C 2nd-highest
90°C	−119°C
92°C	-119°C
86°C	−135°C lowest
82°C lowest	-25°C highest
decreases with increasing branching	
Solubility	
"Like dissolves like"	
Polar compounds will dissolve	_compounds
Non-polar compounds will dissolve	compounds

Because soap has both a polar and non-polar group, it can form a structure called a

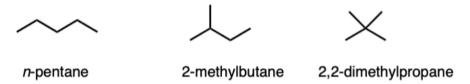
_ to "wash" away an oil molecule, while also being soluble in water

Practice Questions


1. Which of the following compounds has the higher boiling point?

- A. CH₃OH
- B. NaCl
- C. Benzene
- D. CH₃CH₃CI

2. What compound will be soluble in Water?


- A. Cyclohexane
- B. CH₃CH₃OH
- C. CCI₄
- D. CH₃CH₃CH₃CH₃CH₃

3. Rank the compounds in order of decreasing boiling point

- A. **I** < **I** < **I**
- B. I < **I** < **I** I
- C. III < II < I
- D. **Ⅲ < Ⅰ < Ⅱ**

- 4. What intermolecular force is present in all molecules?
 - A. Hydrogen Bonding
 - B. Ion-Dipole
 - C. London Dispersion
 - D. Dipole-Dipole
- 5. What is the boiling point and melting point relationship between the following compounds?

- A. N-pentane has the highest melting point and boiling point
- B. 2,2-dimethylpropane has the highest melting point, and n-pentane has the highest boiling point
- C. 2-methylbutane has the highest melting point, and 2,2-dimethylpropane has the highest boiling point
- D. 2,2-dimethylpropane has the highest boiling point, and n-pentane has the highest melting point