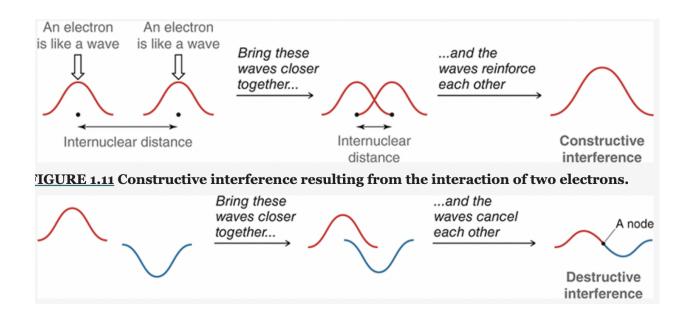
Session 2 Worksheet

You do not have to write lone pairs if you don't want to, however, you MUST include a formal charge (if applicable)

Resonance

Resonance structures:

We represent resonance structures with _____


Note: the resonance structures are not switching back and forth! The hybrid is a mixture of both structures

Curved Arrows:

Use a double-barbed arrow, single-barbed arrows show the movement of radicals (single e-)

Molecular Orbitals

Molecular Orbital (MO):			
Represents the likely to be found	where one or	two electrons	of a molecule are
Have a	behavior with	and	lobes
	Remember		
Bonding MO:			
Anti-bonding MO:			

Hybridized Orbitals:

	Sp ₃	Sp ₂	Sp
Diagram	H H Sigma bonds A sigma bond H H	σ Bonds H σ Bond overlap H H σ Bond overlap H	π Bond σ Bond σ Bond σ H η η η η η η η η η η η η η η η η η η η
What's Happening			
Bond-line			
Geometry			
Angles			

Hybridization life hack!!!

$$-c - c = c - c =$$

$$sp^{3} sp^{2} sp$$

Determine the hybridization state of each carbon:

VSEPR Theory:

Common Molecular Shapes:

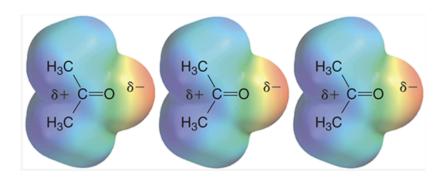
Compound	Bonding e- pairs	Lone e- pairs	Steric number	Arrangement of e- pairs	Molecular Geometry
H \ H					
H C H					
H — N — H					
н — о—н					
F B F					
H — Be — H					

Cis/trans Steroisomerism:

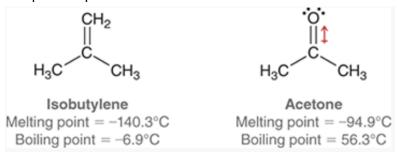
Cis:

Trans:

We can think of the molecule as being on a plane and separating this plane evenly either through the molecule itself or through a double/triple bond


Ex:

Restricted Rotation:
AKA, the properties of a single, double, and triple bond
Order the bonds:
Length
Energy
Church math
Strength


Intermolecular Forces

Dipole-Dipole:

The resulting ______ between two dipoles

How does this affect bp and mp?

Isobutylene lacks ______, so the mp and bp are much lower compared to Acetone, which has _____

Hydrogen Bonding:

• Not technically a "bond", more like another form of attraction

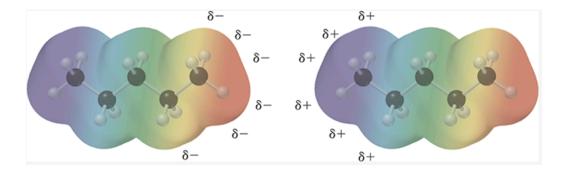
A hydrogen is connected to an _____(____

In most cases, H-bonding takes priority

How does this affect bp & mp?

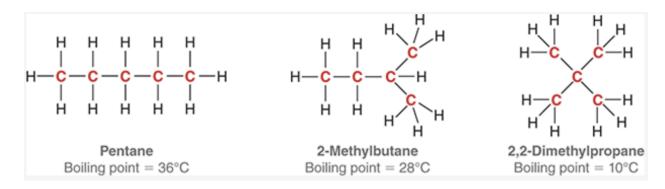
Ethanol has a higher bp because it has a hydrogen bonded to, versus Methoxymethane, which

only has a _____bond


Notice how as more hydrogens are bonded to the Nitrogen atom, the _____ the bp gets

London Dispersion Forces:

A consideration of the _____ and ____ charges on a whole molecule, rather than the entire atom


Usually observed in large _____

This force is transient, or _____

How does this affect bp and mp?

The _____ the carbon chain, the ____ higher the bp

The more ______, the ______ the bp