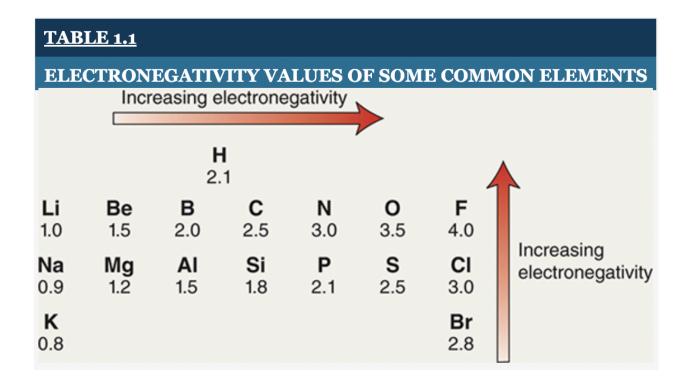
## Session 1 Worksheet

| Session 1 Worksneet               |                                   |                                   |
|-----------------------------------|-----------------------------------|-----------------------------------|
| Vocab                             |                                   |                                   |
| Organic Chemistry:                |                                   |                                   |
| Organic Compounds:                |                                   |                                   |
| Inorganic Compounds:              |                                   |                                   |
| Isotopes:                         |                                   |                                   |
| Ex:                               |                                   |                                   |
| Number of Neutrons $= 12 - 6 = 6$ | Number of Neutrons $= 13 - 6 = 7$ | Number of Neutrons $= 14 - 6 = 8$ |
| 12 🦰                              | 13                                | <sup>14</sup> C                   |
| 6                                 | 6                                 | 6                                 |
| Valence Electrons:                |                                   |                                   |
| Thenumbe<br>the valence shell     | r tells you how many valence      | e electrons the element has in    |
| Ionic Bonding:                    |                                   |                                   |
| Covalent Bonding:                 |                                   |                                   |
| Polar Covalent:                   |                                   |                                   |
|                                   |                                   |                                   |


In the chart below, write down whether the bonding is ionic, covalent, or polar covalent

| Br <sub>2</sub> | NaOH | H₂O | CH₃ | NaBr | C(CH <sub>3</sub> ) <sub>3</sub> |
|-----------------|------|-----|-----|------|----------------------------------|
|                 |      |     |     |      |                                  |

Electronegativity Trend:

## **Tournament of the Elements**





Heterolysis:

Homolysis:

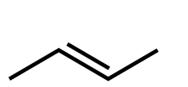
| <u>Tetra</u> valent                       | <u>Tri</u> valent                                  | <u>Di</u> valent                             | <u>Mono</u> valent                                                                      |
|-------------------------------------------|----------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|
| Carbon generally forms <i>four</i> bonds. | —N—   Nitrogen generally forms <i>three</i> bonds. | —O— Oxygen generally forms <i>two</i> bonds. | H— X— (where X = F, Cl, Br, or I) Hydrogen and halogens generally form <i>one</i> bond. |

Draw the Lewis structures of:

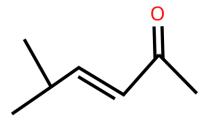
CCI₄ NH₃ Dihydrogen Monoxide

## Calculating Formal Charge

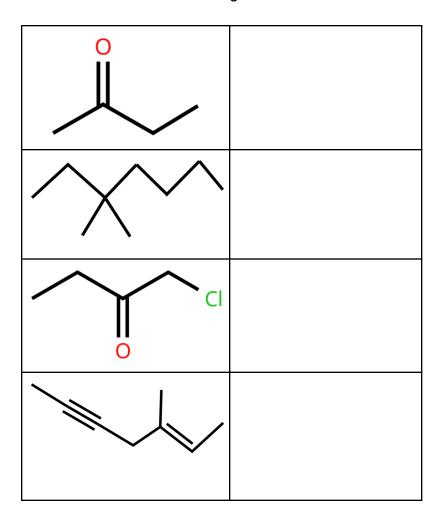
Find the formal charge of the central atom:


Constitutional Isomers:

What is the relationship of these molecules? Different, Same, or Constitutional Isomers?


| C <sub>4</sub> H <sub>10</sub>                | H <sub>3</sub> C CH <sub>3</sub> |
|-----------------------------------------------|----------------------------------|
| $H_3C \longrightarrow C \longrightarrow CH_3$ | H <sub>3</sub> C CH <sub>3</sub> |
| CH <sub>3</sub> CH <sub>3</sub>               | CH <sub>3</sub> H <sub>3</sub> C |

In organic chemistry, we mainly use bond line structure to represent compounds, however, converting bond line to condensed formula (and vice versa) is important to understand and know how to do.

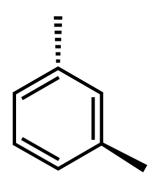

First, start with labelling all carbons, hydrogens, and possible lone pairs on the given structures:







Write the condensed formula given the structure:




Write the structure given the condensed formula:

| CH₃CH₂CH₂CH₂Br   |  |
|------------------|--|
| CH3CH(CH3)CH2CH3 |  |
| CH₂CHCH₂OH       |  |

|  | W | /ed | lges | and | Das | hes: |
|--|---|-----|------|-----|-----|------|
|--|---|-----|------|-----|-----|------|

| When thinking about molecules in a 3D p | olane, we use              | _to represent the substituent |
|-----------------------------------------|----------------------------|-------------------------------|
| going behind the page, and              | to represent the substitue | ent coming out of the page    |

