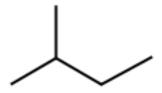

Exam 1 Test Prep

Concepts to Understand:

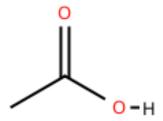
- Electronegativity
- Converting Condensed, Bond-line, and Dashed
- Formal Charge
- Constitutional Isomers
- Hybridization
- Functional Groups
- Degree of Substitution
- Intermolecular Forces
- Acids and Bases

Electronegativity


More electronegative atoms can <u>Stubilize</u> a <u>NUATIVE</u> charge

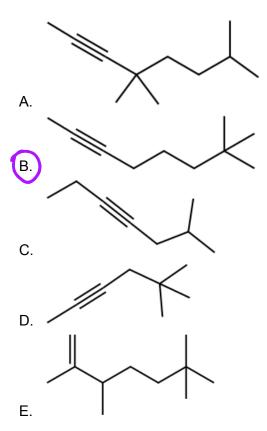
Structures

Condensed to Dash to bond line practice:


(CH₃)₂CHCH₂OH	H, C - H H, C - C - C - OH H H H	Дон
CH3 CH(OH) CH2CH3	H	OH
CH3 CH2 CH(CH3) CH3	H-C-H H-C-H	
CH₃CH(OH)CH₂COOH	H-C-H	OH OH

What would be the condensed formula for the following compound?

- A. CH₃CH(CH₃)CH₂CH₂
- B. CH₃CH₂CH₂CH₃
- C. CH(CH₃)CH₂CH₂CH₃
- D CH₃CH(CH₃)CH₂CH₃
 - E. CH₃CH₃(CH₃)CH₂CH₃


What would be the condensed formula for the following compound?

- A. (CH₃)₂CCOOH
- B. CH₃COOCH₃
- C) CH₃COOH
- D. CH₃CHOOH
- E. CH₂COOH

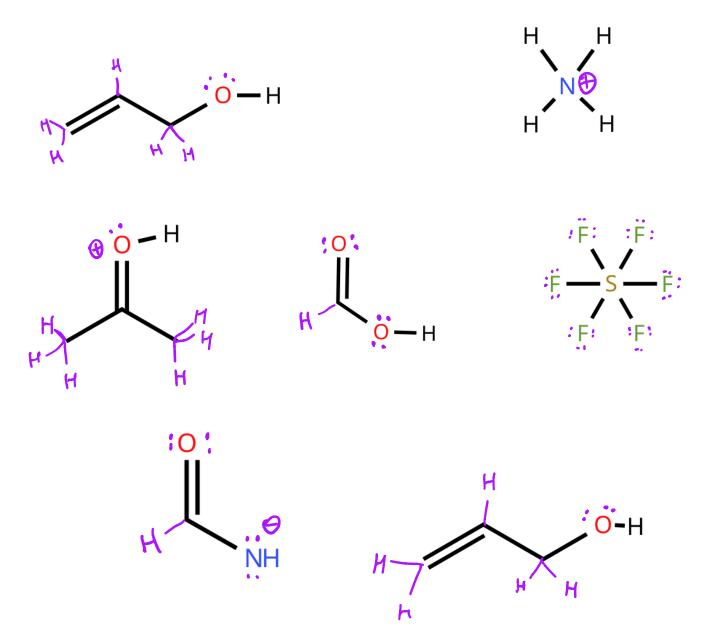
What is the correct bond-line structure of this compound?

$CH_3CC(CH_2)_3C(CH_3)_3$

Formal Charge

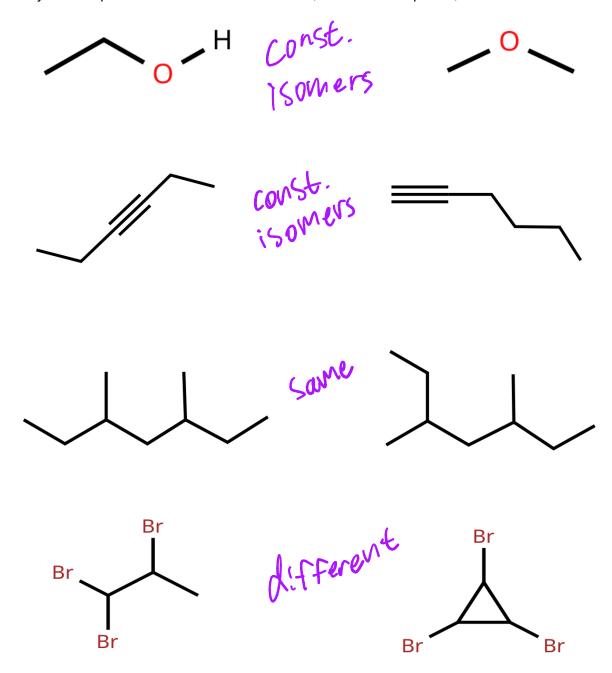
Draw all hydrogens, lone pairs, and formal charges (if applicable)

Remember your formal charge calculations:


$$FC=V-N-rac{B}{2}$$

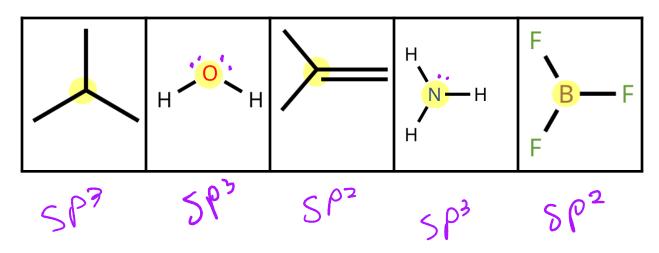
FC = formal charge

V = number of valence electrons


V = number of nonbonding valence electrons

B = total number of electrons shared in bonds

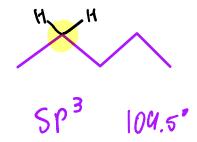
Constitutional Isomers


Identify the compounds as constitutional isomers, the same compound, or different:

Hybridization

How many Carbons, Pi, and Sigma bonds are in the following structures?

Identify the hybridization of the central atom:



Carbon atoms have a face-to-face overlap AND a side-to-side overlap of orbitals, what kind of bond(s) and how many bonds were created?

· a sigma bond and a Pi bond · double—bonded carbons

What is the hybridization of the highlighted atom?

CH₃CH₂CH₂CH₂CH₃

CH₂CH₂

Functional Groups

I highly recommend making flashcards with their chemical formula, structure, and relative pKa values (excluding alkyl groups)

Alkyl Functional Groups

Methyl	my.	Ethyl	man
Propyl	may /	Butyl	nh
Isopropyl	m	Phenyl	nun'y
Benzyl		Tert-butyl	non

Alkyl Halide	R-x	~ c1	Nitrile	R-C=N	~ CN
Alkane	R ~ R	>	Ketone	OLA	0=
Alkene	2	~	Aldehyde	P	5 5
Alkyne	R		Carboxylic Acid	ROH	o _ €
Alcohol	R - 0H	± ←	Ether	ROA	<i>>D></i>
Aromatic/ Arene/ Benzene			Ester	OR OR	0
Amine	R 2-R	L ₂	Amide	OH NR	-2

Intermolecular Forces

Factors that affect bp/mp:

The more _______ in a structure, the ______ the boiling point

Intermolecular forces:

LONGER carbon chain; ______ the bp

More H - bonding; higher bp

The more ______ in a structure, the ______ the melting point

When a molecule can stack easily the melting point is _______

Increasing Interaction Strength

- 1. D
- 2. F
- 3. A
- **4**. B
- **5**. \vdash
- 6. (

- Ion-Dipole
- B Hydrogen Bonding
- C London Dispersion
- lonic Bonds (crystal)
- Dipole-Dipole
- Covalent Bonding

More intermolecular porces

Why would an ether have a lower boiling point than an alcohol?

√ 0 √	∕ ОН
Hondon Forces	· London forces
-10100e	· DIPOLE
	· H-bonding

Which compound has the higher melting point and boiling point, why?

CH3(CH2)3OH	(СНз)зСОН
04	OH
· high boiling Point · long carbon chain	· high melting Point -lots of branching

Identify all intermolecular forces in the compounds below and star their strongest one:

HO CH ₃	O=Mn-O- K+	H ₃ C CH ₃
· London dispersion · H-bonding * · Dipole - Dipole	· Ion: c bonding to . Ion -d: pole	· London dispersion

Acids/Bases

Bronsted Lowry Acid: H don or

Bronsted Lowry Base: Ht acceptor

Lewis Acid: Pair acceptor

Lewis Base: e Pair donor

What does the acronym ARIO mean? What is it looking at?

Atom

Resonance

Induction

Orbitals

The stability of a conj. acid/base to determine basicity/acidity

Identify the Nucleophile and Electrophile in the following acid/base reaction:

$$NH_2^-(aq) + H_2O(I) \rightarrow NH_3(aq) + OH^-(aq)$$

$$NUC \qquad Elect$$

Would the reaction above favor the products or reactants?

Products

Predict the equilibrium and identify the most acidic compound:

Right side, Compound 1 most acidic

Would CH2ClCH2CO2H or CH3CH2CO2H be a stronger acid? Why?

This one because it's conj. base is stabilized (weakened) by inductive effects of cl

You are given compounds with a pKa of 25, 44, and 51. What kind of molecule would you expect these to be (respectively)?

- A. Alkane, Alkene, Alkyne
- B. Ether, Alkyne, Alcohol
- Alkyne, Alkene, Alkane
- D. Carboxylic Acid, Alcohol, Ether
- E. Nitrile, Ester, Alkyne

What is the pKa range of an alcohol?

- A.) 16-18
- В. 26-29
- C. 1-3
- D. 10
- E. 45-50

Which regions of this compound will be more acidic?

- A Sulfur > Oxygen > Nitrogen
- B. Oxygen > Nitrogen > Sulfur
- C. Nitrogen > Oxygen > Sulfur
- D. Sulfur > Oxygen and Nitrogen
- E. Sulfur and Oxygen > Nitrogen