Final Exam Worksheet

Types of bonds

Ionic Bonding:

Covalent Bonding:

Polar Covalent:

What is the bonding type of each molecule below?

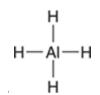
NaOH	НІ	NH3	H2

Hybridization

Determine the hybridization of the hearted element:

Lewis Structures

Draw the Lewis structure of the following compounds:

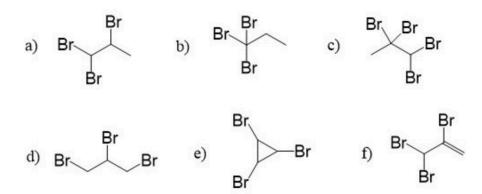

NI3	CCl4	CO ₂	H ₂ CO

Which of the Lewis structures is wrong?

Formal Charge

Assign each molecule a formal charge (if applicable)

Remember the equation:



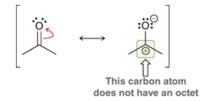
Constitutional Isomers

Draw all possible isomers of C₃H₇Cl

Draw all of the possible isomers of propanol

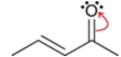
Identify the constitutional isomers of Molecule A

Resonance


Rules

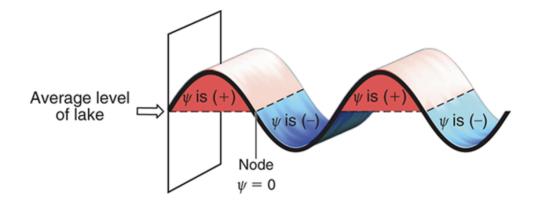
1. Avoid breaking a single bond

2. Never exceed an octet for second-row elements (C, N, O, F)



3. Less than the octet is okay

Do the following resonance arrows violate the octet rule? Are there any other rules being violated in the structures below?



Which of the following arrows is valid?

Draw all possible resonance structures in the following compounds:

$$\bigvee^{\mathsf{NH}_2} \bigvee^{\mathsf{O}}$$

MO theory/Quantum Mechanics

Follow these three principles of filling electron orbitals:

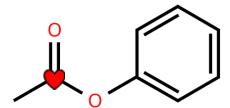
Aufbau's:

Pauli Exclusion:

Hund's Rule:

Bonding

How many sigma and pi bonds are in the following molecules?


Which of the compounds has the longest and shortest carbon-carbon bond? $\mathsf{CH}_3\mathsf{CH}_3$ and HCCH

Order the compounds below in decreasing bond length: HI, HF, and HBr

Do the compounds below have an overall dipole moment?

CH4 NH3 H2O CO2 CCl4 CH2Br2

What is the carbon atom's Hybridization state, molecular geometry, and bond angle in the compound below?

bonus What are the functional groups here?

Order the compounds in increasing boiling point:

Functional Groups

Identify the functional groups in the compounds (there can be more than 1):

	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
O CI	OH	

Of the intermolecular forces listed, which is stronger? Weaker? a. London-Dispersion b. Dipole-Dipole c. Hydrogen Bonding What intermolecular force is present among all molecules?
Acids and Bases
Define Bronsted-Lowry acids/bases:
Define Lewis acids/bases:
Identify the acid, base, conj. acid, and conj. base of the reactions below:
HCl + NH₃ → NH₄⁺ + Cl⁻
OH- + HCN \rightarrow H ₂ O + CN-

The _____the pKa value, the stronger the acid!

Rank the compounds in increasing order of basicity:

 $CH_{3}O^{-},\ H_{2}O,\ NH_{3},\ H_{2}N^{-}$

Circle the most acidic hydrogen:

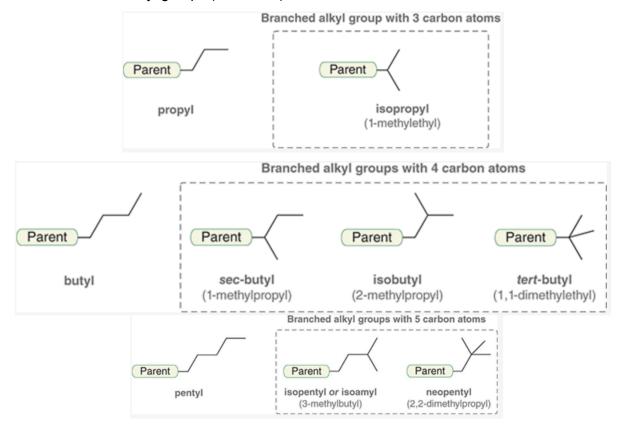
Which of the compounds is more acidic? Why?

Nomenclature 101

Naming Alkanes:

Number of C atoms	Formula	Name
1	CH ₄	methane
2	C_2H_6	ethane
3	C ₃ H ₈	propane
4	C_4H_{10}	butane
5	C ₅ H ₁₂	pentane
6	C ₆ H ₁₄	hexane
7	C ₇ H ₁₆	heptane
8	C ₈ H ₁₈	octane
9	C_9H_{20}	nonane
10	$C_{10}H_{22}$	decane

1.	If there is a competition of numbering chains of an equal length, number so that you get
	the
	amount of substituents


2.	Use		to	inc	dica	te	а	ring	9
----	-----	--	----	-----	------	----	---	------	---

3.	To name alky	/I substituents	+

4.	Number the parent chain and assign substituents the _	number possible
	according to IUPAC rules	

5.	To put names together,	substituents and combine using
	-	

Common names of alkyl groups (memorize)

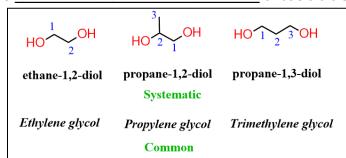
When a substituent appears more than once in a molecule:

# of functional groups:	Prefix:	
2	Di-	
3	Tri-	
4	Tetra-	
5	Penta-	
6	Hexa-	

Naming Alkyl Halides

Halogen is treated as a _____

Naming Alcohols

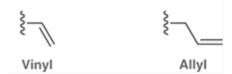

- 1. Number the chain that includes the _____ group
- 2. Ends in _____

3. Alcohol gets (for the purposes of this class)

Naming Diols

1. Similar to alcohols just make sure you indicate the prefix of multiple alcohols

2. Remember the _____ of basic diols


Bicyclic Compounds

- 1. Find total _____
- 2. Use _____
- 3. Find _____
- 4. Order paths going_____

Naming Alkenes

- 1. Ends in _____
- 2. Use the longest chain that _____
- 3. Pi bond is assigned _____

Allyl and Vinyl groups

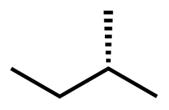
Naming Alkynes

- 1. Use _____
- 2. The triple bond should be assigned _____

Alkenes and Alkynes: Which Takes Priority?

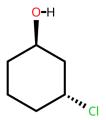
A molecule containing an alkene and alkyne with no higher-ranking substituents

- will be numbered so as to provide the lowest set of locants
 will be named so as to arrange the ene/yne alphabetically


Name the compounds:

Draw the compound based on the name:			
Trans-1,3-dimethylcyclohexane	(Z)- 2-bromo-2-butene		
3-methylcyclopentene	2,5-dimethyl-3-hexyne		
10-ethyl-2-methylbicyclo[3.3.2]decane	2-methylpentene		

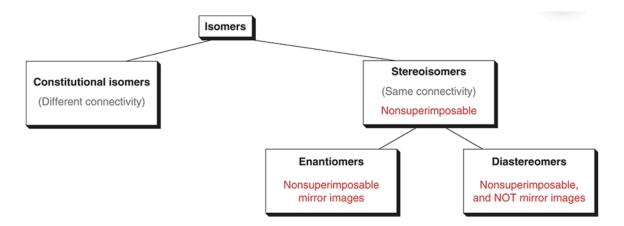
Conformational Analysis


Identify the most stable Newman projection of the molecule below:

Draw the Newman projections:

2,3-dibromobutane looking down the C2-C3 bond:

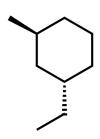
Draw the chair conformation of the compounds below:


Label the compounds as cis, trans, or non-isomeric

Which of the compounds has the greatest amount of ring strain:

What is the hydrogen deficiency index of the compounds below:

2


Stereochemistry

Designate the configuration on the following compounds:

Designate sequentially (1,2) the stereochemistry at the numbered sites in the molecule shown below:

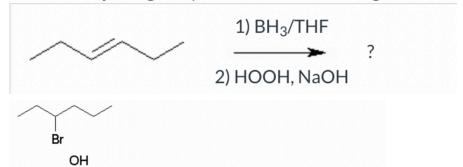
Name the compound with the R & S configuration:

Substitution and Elimination Reactions

MEMORIZE THIS TABLE!!!

	Strong Base/ Weak Nucleophile	Strong base/ Strong Nucleophile	Weak base/ Strong Nucleophiles	Weak base/ Weak nucleophile
1°				
2°				
3°				

Predict the products of the following reactions and identify what kind of reaction is happening:


$$Br \longrightarrow H_2O$$

$$H_3C$$
 H_2O
 H_2O
 CH_2CH_3

Reactions of Alkenes and Alkynes

Predict the major product of the following reaction.

Give the major organic product of the following reaction.

There is no reaction under these conditions or the correct product is not listed here

Which product would form under the conditions given below?

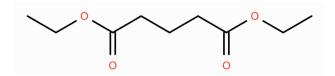
Give the major product in the reactions below:

Fill in the missing reagents and identify the reaction being done:

Circle the major product:

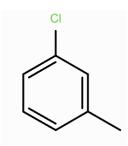
There is no reaction under these conditions or the correct product is not listed here.

Predict the products:

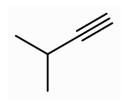

Multi-step Synthesis

Retrosythesis

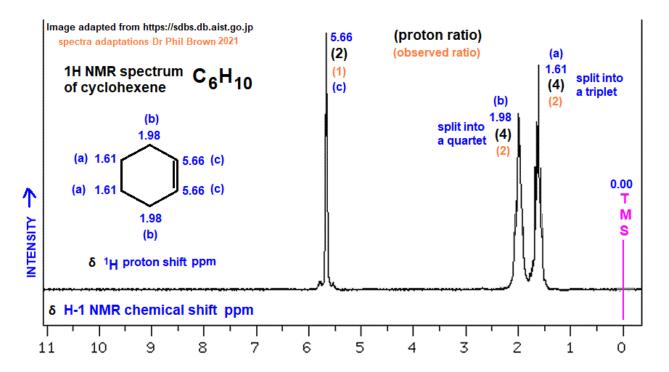
NMR


How many H NMR peaks will you expect to see in the compounds below?

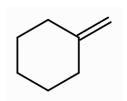
1.


- A) 7
- B) 3
- C) 1
- D) 4
- E) 5

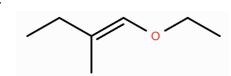
2.


- A) 4
- B) 2
- C) 5
- D) 1
- E) 3

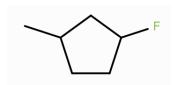
3.


- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

Integration explained a little more for molecules with complete symmetry:

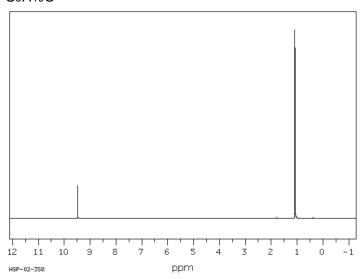

How many C NMR peaks will you see in the compounds below?

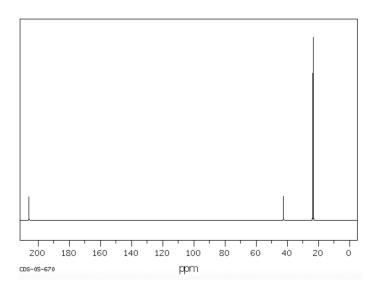
1.


- A) 1
- B) 5
- C) 4
- D) 2
- E) 6

2.

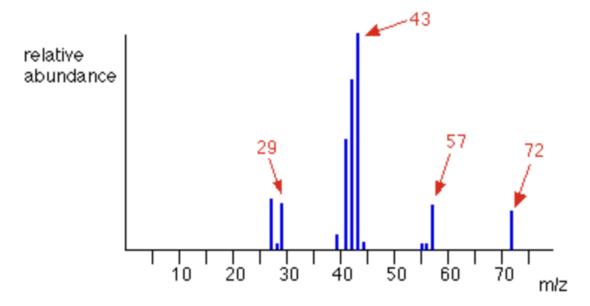
- A) 6
- B) 12
- C) 4
- D) 2
- E) 7


3.



- A) 5
- B) 3
- C) 1
- D) 6
- E) 2

Given the molecular formula, H NMR and C NMR, propose a structure:

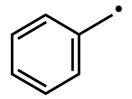

C5H10O

Mass Spectrometry

Given the mass spec of pentane and its prominent peaks, determine the base peak and molecular ion peak.

- 1. A prominent (M•-18) peak suggests that the compound might be a(n):
 - A) Alkane
 - B) Alcohol
 - C) Ether
 - D) Ketone
 - E) Primary amine
- 2. Mass spectrometry detects:
 - I. Radicals
 - II. Radicals and radical cations
 - III. Radical cations
 - IV. Cations and Anions
 - A) I and II
 - B) III only
 - C) IV only
 - D) I, II, and III
 - E) II and IV

3. What is the criterion for using mass spectrometry?

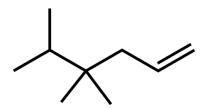

- A) To find the composition of the sample
- B) To find the relative mass of atoms
- C) To find the concentration of elements in the sample
- D) To find the properties of the sample

Radical Reactions

Radical Stability:

Resonance in radicals:

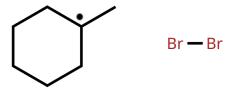
Allylic radicals are _____ and are more stable


Vinylic radicalsa	and are	less	stable	E
-------------------	---------	------	--------	---

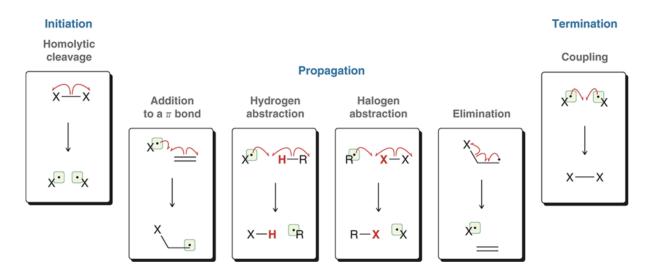
Identifying the weakest bond:

The weakest C-H bond comes from the _____

Start by drawing all possible radicals and compare stability:

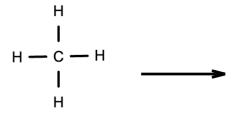

Addition to a pi bond
Hydrogen Abstraction
Halogen Abstraction
Elimination

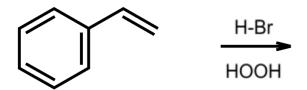
6. Coupling


The radical mechanism patterns:

1. Homolytic cleavage

Name the radical mechanism and draw the arrow pushing:


Patterns can be grouped into 3 categories, _____, ____,

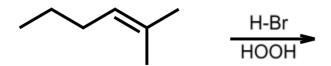

When doing radical reactions remember: when a new ______ is formed or when adding to an existing _____, a ____ will form!

Chlorination is _____ while bromination is _____

Draw the radical mechanism below, and name the mechanism being used in each step:

Draw the mechanism and label:

Give the major product of the following reaction.


There is no reaction under these conditions or the product is not listed here.

Give the major product of the following reaction.

$$\frac{Br_2}{hv} \qquad ?$$

There is no reaction under these conditions or the product is not listed here.

Draw the <u>products</u> of this reaction:

