Session 11 Worksheet

Alkenes and E1 Reactions

E and Z Designation:

Priority goes to the atom with highest_____

(E) configuration:

(Z) configuration:

Assign Designation:

Stability of Alkenes:

Dehydrohalogenation:

$$-\overset{H}{\overset{|}{C}}\overset{|}{\overset{\beta}{\overset{}{\bigcirc}}}\overset{|}{\overset{C}{\overset{}{\bigcirc}}} + :\overset{B^{-}}{\overset{}{\overset{}{\bigcirc}}} \longrightarrow \overset{C}{\overset{}{\overset{}{\bigcirc}}}\overset{C}{\overset{}{\overset{}{\bigcirc}}} + :\overset{\vdots}{\overset{\vdots}{\overset{}{\overset{}{\bigcirc}}}}$$

$$\overset{:X:}{\overset{:X:}{\overset{}{\overset{}{\bigcirc}}}}$$

$$\overset{A \text{ base}}{\overset{}{\overset{}{\overset{}{\bigcirc}}}}$$

$$\overset{Dehydrohalogenation}{\overset{}{\overset{}{\overset{}{\bigcirc}}}}$$

E2 Reactions

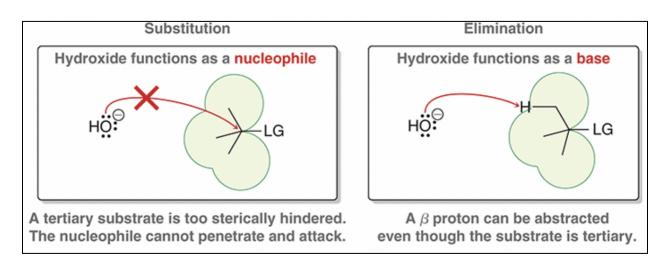
E2

Uses a _____ mechanism

Instead of a nucleophile, elimination uses a ______, specifically a ______ for E2

Alkoxide Base Synthesis:

HELPFUL HINT


EtONa/EtOH is a common abbreviation for sodium ethoxide dissolved in ethanol.

HELPFUL HINT

 $t ext{-BuOK}/t ext{-BuOH}$ represents potassium $tert ext{-butoxide}$ dissolved in $tert ext{-butanol}$.

Kinetics:

E2 reacts better with _____ alkyl halides

Stereoselectivity of E2:

Antiperiplanar (Anti-coplanar):

Synperiplanar (Syn-coplanar):

Example

What is observed:

What is NOT observed:

Types of strong bases:

Regioselectivity:

When a double bond can form in different regions of the compound, the reaction is

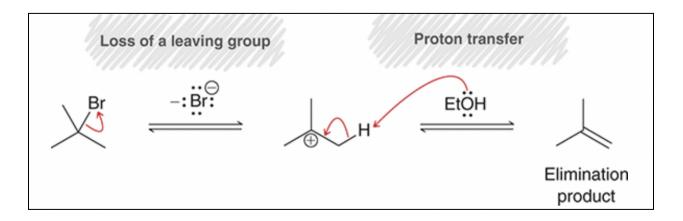
Zaitsev product:

Hoffmann product:

The base you use determines the major/minor products

Bulky bases:

Non-bulky bases:

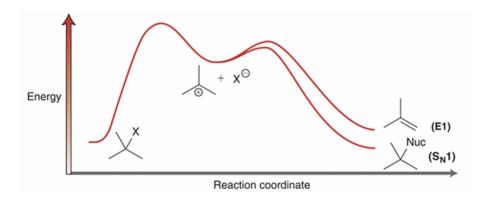

Common types of sterically hindered (bulky) bases:

Practice: Determine the major/minor products of the following E2 reaction:

Practice: E2 mechanism with major products in mind

E1 uses a _____ mechanism

Requires a _____ base



Kinetics:

E1 can only react with a _____ alkyl halide

In this reaction, both E1 and Sn1 products can be formed

Energy diagram:

Types of weak bases

Just like with Sn1, our carbocation can undergo ______ to form the most stable product

Example (hydride shift):

Example (methyl shift):

Substitution/Elimination Reactions 101: How to determine when you're using Sn1/E1/Sn2/E2

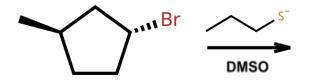
1. Determine the function of the reagent:

Elimination:

Substitution:

Strong base	Strong base	Weak base	Weak base		
Weak nucleophile	Strong nucleophile	Strong nucleophile	Weak nucleophile		
DBN DBU	HO [©] MeO [©] EtO [©]	I [⊝] Br [⊝] Cl [⊝] RS [⊝] HS [⊝] RSH H ₂ S	H ₂ O MeOH EtOH		

2. Look at your substrate to determine the mechanism


Memorize this diagram!!

	Strong base Weak nucleophile	Strong base Strong nucleophile			Weak base Strong nucleophile	Weak base Weak nucleophile	
1°	E2	E2	S _N 2		S _N 2	\bigwedge	\vee
2 °	E2		E2	S _N 2	S _N 2	\bigwedge	\wedge
3°	E2	E2			S _N 1	S _N 1	E1

3. Consider any regiochemistry or stereochemistry

	Regiochemistry	Stereochemistry
Sn2		
E2		
Sn1		
E 1		

Practice problems :)

