### **Session 10 Worksheet**

### **Nucleophilic Reactions**

Alkyl Halide:

Alkyl halides undergo 2 types of reactions:

Substitution

X

$$\vdots$$

Nuc

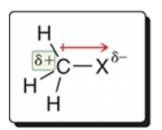
Nuc

+ : $\ddot{X}$ 

Elimination

 $\vdots$ 

Base


+ H-Base + : $\ddot{X}$ 
 $\vdots$ 

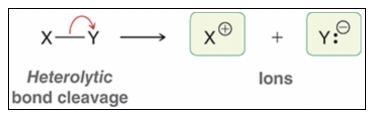
Nucleophile:

Electrophile:

In an alkyl halide, the halogen serves to:

1.




2.

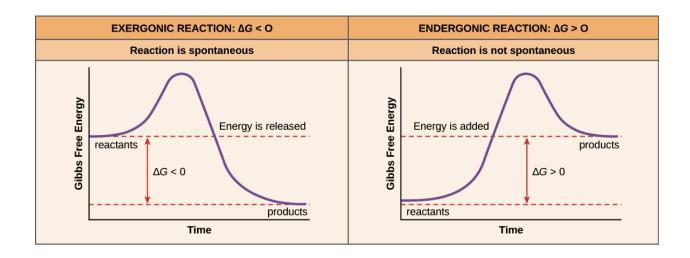
Leaving Group:

Good leaving groups:

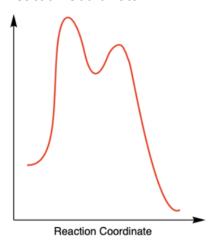
For halogens:

Heterolytic bond cleavage:




Types of mechanisms:

- 1. SN2 (concerted mechanism)
- 2. SN1 (stepwise mechanism)


#### **Hammond Postulate**

Exergonic Reaction:

**Endergonic Reaction:** 



**Reaction Coordinate** 



Every peak represents a \_\_\_\_\_

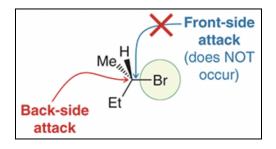
Every valley represents an \_\_\_\_\_

#### **SN2 Reactions**

S<sub>N</sub>2

Concerted Mechanism:

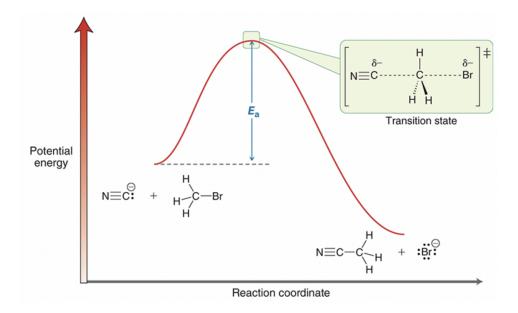
Kinetics:


Concept question: What would happen if the concentration of the nucleophile were doubled?

Sterospecificity of S<sub>N</sub>2:

Nucleophiles attack:

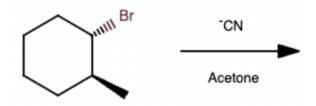
S<sub>N</sub>2 **WILL NOT** happen on a \_\_\_\_\_ alkyl halide because there is no room for a backside attack to occur


This is referred to a nucleophilic attack or \_\_\_\_\_



S<sub>N</sub>2 is stereospecific, meaning:

Example:


### Free energy diagram



How many transition states does Sn2 have? How many intermediates?

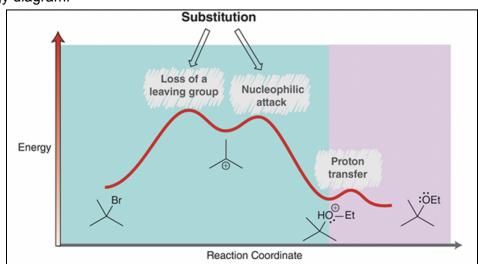
S<sub>N</sub>2 requires a \_\_\_\_\_ and \_\_\_\_ alkyl halide

**Practice:** predict the products of the following SN2 reaction and draw the mechanism



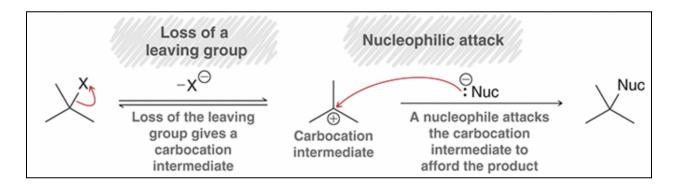
S<sub>N</sub>1

| Uses a | <br>mechanism |
|--------|---------------|
|        |               |


Typically happens on a \_\_\_\_\_ alkyl halide

Kinetics:

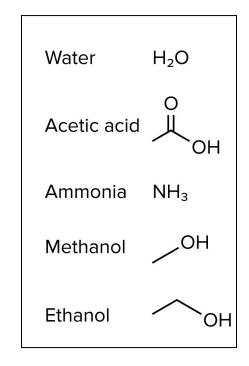
Rate-determining step (RDS):


Typically, k1 is the \_\_\_\_\_\_RDS, and speeds up with \_\_\_\_\_ and \_\_\_\_\_ following after

Free energy diagram:



How many transition states does Sn2 have? How many intermediates?


#### Mechanism of Sn1:



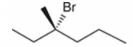

Sn1 Nucleophiles are usually \_\_\_\_\_

| Common weak nucleophiles |  |
|--------------------------|--|
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |

Sn1 needs a \_\_\_\_\_ solvent



## Example:



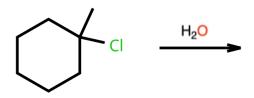

Stability of carbocations:

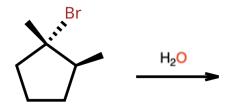
Carbocations have a \_\_\_\_\_\_ structure, making the products of

Sn1 a

Example:




Example (hydride shift):


(hydride shift)

$$Br$$
  $H_2O$  heat

(methyl shift)

# **Practice**



