Session 4 Worksheet

Physical Properties and Intermolecular Forces: A Better, Comprehensive Guide

Increasing Interaction Strength

Cation-anion (ion-ion)

Covalent bonds

ion divolu

nydrogen bonding

dipole - dipole

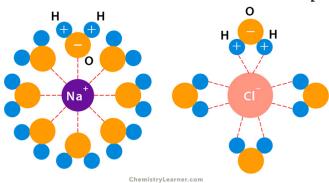
London dispersion

Physical Properties

For this class we are talking about _____ MP ___ and ____ b P

Intermolecular Forces

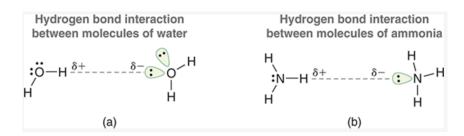
Ion-Ion:


- Typically observed in <u>Crystals</u> and <u>Saits</u>
- Both mp and bp are <u>Very high</u>

Covalent Bonds:

- An intermolecular force ______ the compound itself
- Considered <u>Strong</u> because of the <u>SNaring</u> of electrons

Ion-Dipole:

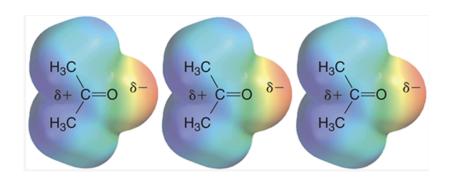

Sodium Chloride (NaCl) Dissolved in Water (H₂O)

Hydrogen Bonding:

• Not technically a "bond", more like another form of attraction

A hydrogen is connected to an <u>SN</u> <u>Atom</u> (O,N,F

How does this affect bp & mp?

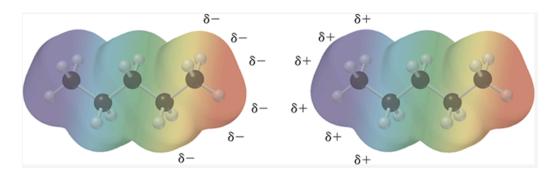

Ethanol has a higher bp because it has a hydrogen bonded to, versus Methoxymethane, which

only has a _____bond

Notice how as more hydrogens are bonded to the Nitrogen atom, the ______ the bp gets

Dipole-Dipole:

The resulting <u>Not attraction</u> between two dipoles



How does this affect bp and mp?

Isobutylene lacks <u>A Significant dipole</u>, so the mp and bp are much lower compared to Acetone, which has <u>Strong Net dipole</u>

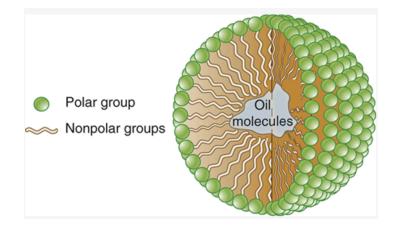
London Dispersion Forces:

Usually observed in large hwww carlon s

How does this affect bp and mp?

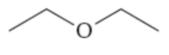
The more branching, the lower the bp

Melting Point

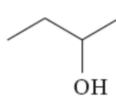

We've been talking about boiling point up until here; however, melting point properties have different requirements

When it comes to branching, generally, the most branched structure will have a
________ melting point (there are exceptions)

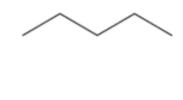
This is largely due to _____structure____and the ability of the molecules to Stack Boiling and Melting Points For Some Isomers of Heptane (C₇H₁₆) boiling point melting point 2nd-highest 98°C highest -90°C 90°C -119°C 92°C -119°C 86°C -135°C lowest 82°C lowest highest -25°C decreases with pay often the fortheres increasing branching **Solubility** "Like dissolves like" Polar compounds will dissolve ______ compounds Non-polar compounds will dissolve \(\lambda \) \(\lambda Determining Solubility: at least dissolves in ___ compounds to be soluble to each other Polar group Nonpolar group (hydrophilic) (hydrophobic) Because soap has both a polar and non-polar group, it can form a structure called a


to "wash" away an oil molecule, while also being soluble in water

mixelle

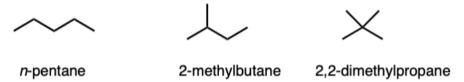


Practice Questions


- 1. Which of the following compounds has the higher boiling point?
 - A. CH₃OH
 - B NaCl
 - C. Benzene
 - D. CH₃CH₃CI
- 2. What compound will be soluble in Water?
 - A. Cyclohexane
 - B CH3CH3OH
 - C. CCI4
 - D. CH3CH3CH3CH3CH3
- 3. Rank the compounds in order of decreasing boiling point 10 West —7 highest bp

Ι

Π


 \blacksquare

A. **I** < **I** < **I**

B. I < **I** < **I**

C. **Ⅲ** < **Ⅱ** < **Ⅰ**

- 4. What intermolecular force is present in all molecules?
 - A. Hydrogen Bonding
 - B. Ion-Dipole
 - C) London Dispersion
 - D. Dipole-Dipole
- 5. What is the boiling point and melting point relationship between the following compounds?

- A. N-pentane has the highest melting point and boiling point
- 8. 2,2-dimethylpropane has the highest melting point, and n-pentane has the highest boiling point
- C. 2-methylbutane has the highest melting point, and 2,2-dimethylpropane has the highest boiling point
- D. 2,2-dimethylpropane has the highest boiling point, and n-pentane has the highest melting point