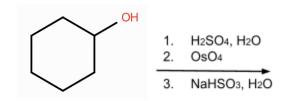
Exam 4 Test Prep Worksheet

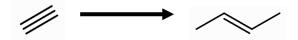
Alkenes			
Reaction	Reagents	Regioselectivity	Stereoselectivity
Hydrohalogenation			
Hydrohalogenation with peroxide			
Acid-Catalyzed Hydration			
Oxymercuration- Demurcuration			
Hydroboration- oxidation			
Halogenation			
Halohydrination			
Catalytic Hydrogenation			
Syn-Dihydroxylation			
Oxidative Cleavage with hot potassium permanganate			
Ozonolysis			

Alkenes			

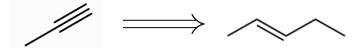

Alkynes				
Reaction	Reagents	Regioelectivity	Stereoselectivity	
Halogenation				
Hydrohalogenation				
Hydrogenation				
Hydrogenation with Lindlar's				
Ozonolysis				
Oxidative Cleavage with hot potassium permanganate				
Formation of Acetylide				
Dissolving Metal Reduction				

Alkynes			

Given the reactions below:


- 1. Name the reaction
- 2. Predict the major product of the reaction
- 3. Draw the mechanism (if needed)

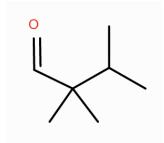
Predict the major product of the multi-step problems below:



Provide the forward synthesis reagents for the problems below:

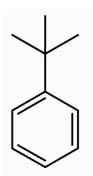
3-methyl-2-butanol to 2-methyl-2-butanol

Provide a retrosynthesis for the scenarios below:

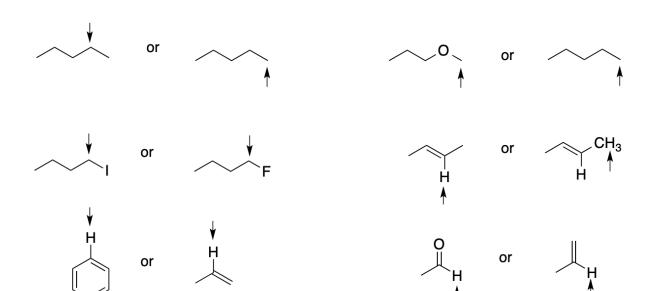

Multiple-choice questions

- 1. Addition of Br2 to (E)-hex-3-ene produces
 - A) a meso dibromide
 - B) a mixture of enantiomeric dibromides which is optically active
 - C) a mixture of enantiomeric dibromides which is optically inactive
 - D) (Z)-3,4-dibromo-3-hexene
 - E) (E)-3,4-dibromo-3-hexene
- 2. Which of the following additions to alkenes occur(s) specifically in an anti fashion?
 - A) hydroboration-oxidation
 - B) addition of Br2
 - C) addition of H2
 - D) addition of H2O in dilute acid
 - E) both A and B
- 3. HBr can be added to an alkene in the presence of peroxides (ROOR). What function does the peroxide serve in this reaction?
 - A) nucleophile
 - B) electrophile
 - C) radical chain initiator
 - D) acid catalyst
 - E) solvent

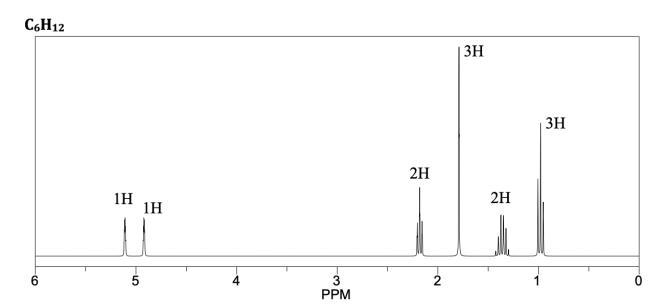
¹H NMR

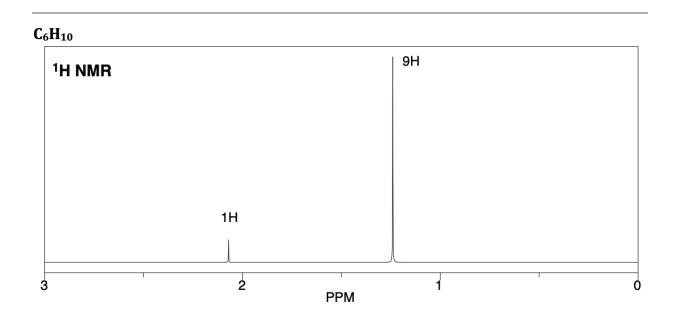

In the compounds below, circle and label the unique hydrogen environments, their splitting pattern, and intergration

CHBr₂CH₃

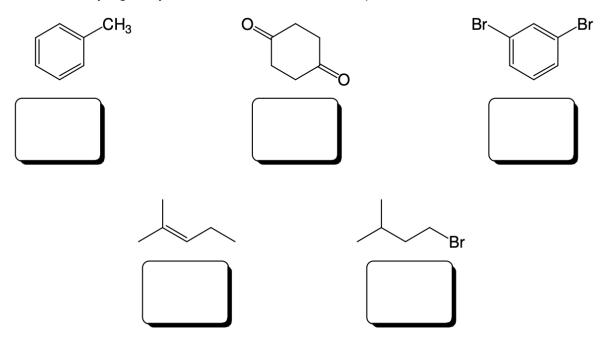


 $ClCH_2CH_2CH_2Cl$

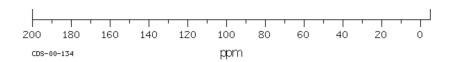

2-Bromoethanol



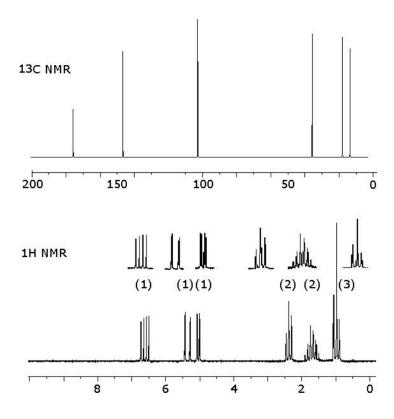
Which of the indicated protons in each pair will show up farther downfield?


Given the molecular formula and ¹H NMR spectra, propose a structure

¹³C NMR


Predict how many signals you would see in the ¹³C NMR spectrum of each of these molecules:

1. Which of options indicates the correct order of carbon chemical shifts of the four carbons of the following compound? Draw what the ¹³C NMR would look like.


$$CH_2$$
= CH - C - C - CCH_3
 $C3$ $C2$ $C1$ C_{Me}

- A C_{Me} < C2 < C3 < C1
- B C3 < C2 < C_{Me} < C1
- $C \quad C1 < C3 < C2 < C_{Me}$
- D $C1 < C_{Me} < C2 < C3$

Given the following molecular formula, ¹H NMR, ¹³C NMR, answer the following questions:

C6H10O2

- 1. Is there symmetry in this compound?
- 2. In the 13C NMR, what does the chemical shift of the signal at about 105 suggest?
- 3. In the 1H NMR, what does the chemical shift of the signal at about 5.2 suggest?
- 4. In the 1H NMR, what does the integration of the signal at about 2.3 suggest?
- 5. In the 1H NMR, what does the splitting pattern of the signal at about 1.0 suggest?
- 6. What is the structure of this unknown?

Mass Spectrometry

Below is the mass spectrum of 2-butanone. Explain the large peak at 43 and the small peak at 73.

NIST Chemistry WebBook (https://webbook.nist.gov/chemistry)

1. A prominent (M•-18) peak suggests that the compound might be a(n):				
A) Alkane				
B) Alcohol				
C) Ether				
D) Ketone				
E) Primary amine				
2. Mass spectrometry detects:				
I. Radicals				
II. Radicals and radical cations				
III. Radical cations				
IV. Cations and Anions				
A) I and II				
B) III only				

- 3. What is the criteria for using mass spectrometry?
 - A) To find the composition of the sample
 - B) To find the relative mass of atoms

C) IV only D) I, II, and III E) II and IV

- C) To find the concentration of elements in the sample
- D) To find the properties of the sample