Session 2 Worksheet

You do not have to write lone pairs if you don't want to, however, you MUST include a formal charge (if applicable)

Resonance

· Shows distribution of charge

Resonance structures:

· used when

We represent resonance structures with <u>Brackets</u> and double sided arrows

Note: the resonance structures are not switching back and forth! The hybrid is a mixture of both structures ____

$$\begin{array}{ccc}
\delta + & \delta + \\
\hline
\text{Resonance hybrid} \\
\text{of 1 and 2}
\end{array}$$

Curved Arrows:

Shows e as if they are moving, but they're not

Use a double-barbed arrow, single-barbed arrows show the movement of radicals (single e-)

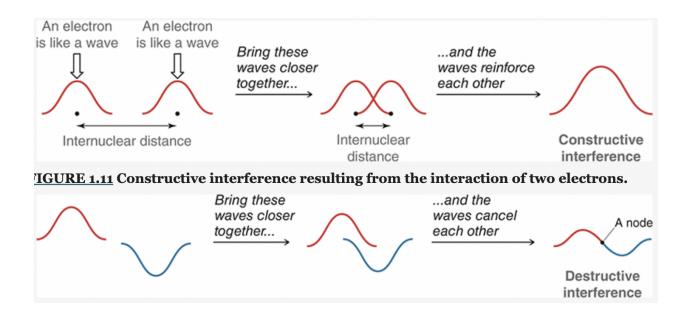
Molecular Orbitals

Molecular Orbital (MO):

- Represents the reaction of space where one or two electrons of a molecule are likely to be found
- Have a <u>Wave IFFe</u> behavior with <u>+</u> and <u>-</u> lobes

Remember

The t/- lobes are not an indicator of charge, simply, they are an illustration of displacement

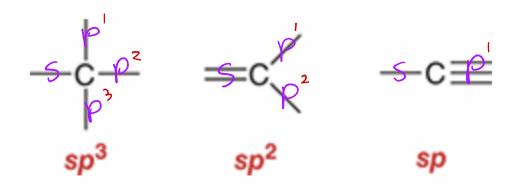

Bonding MO:

- · Result of constructive interference
- · forms bonds
- o lower in energy

Anti-bonding MO:

- · Result of destructive interforence
- o does not form bonds
- o higher in energy

which molecular orbital will be formed first?
bonding Mo



Hybridized Orbitals:

- · A combination of fure atomic orbitals
- o for this class we only focus on s and p

	Sp ₃	Sp ₂	Sp	
Diagram	H H Sigma bonds A sigma bond H H	σ Bonds H σ Bond overlap H H σ Bond H H σ Bond H H H σ Bond H H	π Bond σ Bond σ Bond η H η η H	
What's Happening	A combination of 1s orbitals	An overlap of p orbitals forms 1 pi bond	An overlap of p orbitals forms 2 pi bonds	
Bond-line	H H H H	M>	н — — — н	
Geometry	tetrahedral	trigonal Planar	inear	
Angles	109.5°	120°	180°	

Hybridization life hack!!!

Determine the hybridization state of each carbon:

$$H \stackrel{\mathsf{H}}{\overset{\mathsf{O}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}}{\overset{\mathsf{D}}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}}{\overset{\mathsf{D}}}{\overset{\mathsf{D}}}}{\overset{D$$

$$C1 = SP^{3}$$

$$C2 = SP^{2}$$

$$C3 = SP^{2}$$

$$C4 = SP^{2}$$

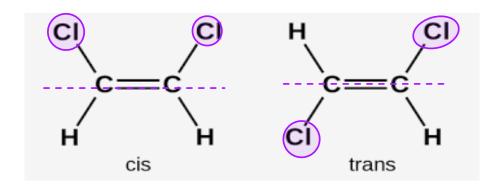
VSEPR Theory:

- o valence Shell electron pair repulsion
- · Used to predict the geometry of an atom

Common Molecular Shapes:

Compound	Bonding e- pairs	Lone e- pairs	Steric number	Arrangement of e- pairs	Molecular Geometry
H C H	<u> </u>	0	7	tetrahedra (te trahedral
т — т т — г	لى	_	4	tetrahedra	trigonal Pyramidal
н — о-н	4	7	J	tetrahedra (Bent
F B F	~	0	3	Tr:gonal Planar	triganol planar
H — Be — H	2	0	2	Linear	L!near

Steric # = # single bond + # lone Pairs


Cis/trans Steroisomerism:

Cis: on the same plane

Trans: on opposite ends of the Plane

We can think of the molecule as being on a plane and separating this plane evenly either through the molecule itself or through a double/triple bond

Ex:

Restricted Rotation:

AKA, the properties of a single, double, and triple bond

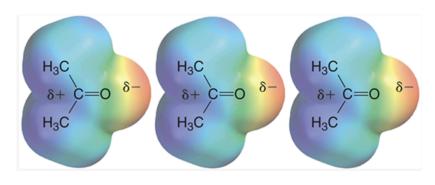
Order the bonds:

Length

longest Shortest

Energy

NAN 10W


Strength

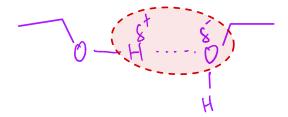
Stronger weaker

Intermolecular Forces

Dipole-Dipole:

The resulting Net Atratt between two dipoles

How does this affect bp and mp?


Isobutylene lacks <u>a significant dipole moment</u>, so the mp and bp are much lower compared to Acetone, which has <u>Strong net dipole</u>

Hydrogen Bonding:

• Not technically a "bond", more like another form of attraction

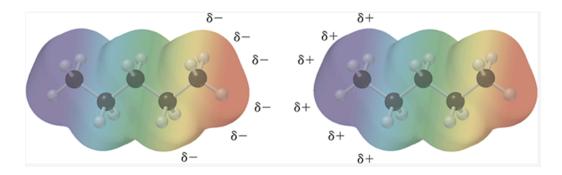
A hydrogen is connected to an $\frac{1}{2}N$ $\frac{1}{2}N$ $\frac{1}{2}N$ $\frac{1}{2}N$

In most cases, H-bonding takes priority

How does this affect bp & mp?

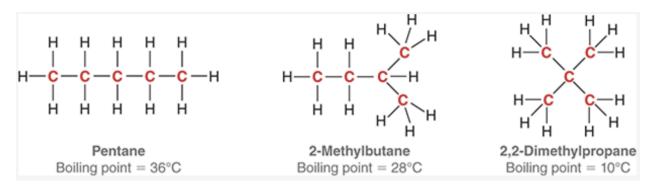
Ethanol has a higher bp because it has a hydrogen bonded to, versus Methoxymethane, which

only has a _____bond


Notice how as more hydrogens are bonded to the Nitrogen atom, the ______ the bp gets

London Dispersion Forces:

A consideration of the ______ and _____ Megutive_ charges on a whole molecule, rather than the entire atom


Usually observed in large hydro carbons

This force is transient, or <u>temporary</u>

How does this affect bp and mp?

The 100 geV the carbon chain, the N WWW Migher the bp

The more branching, the lower the bp