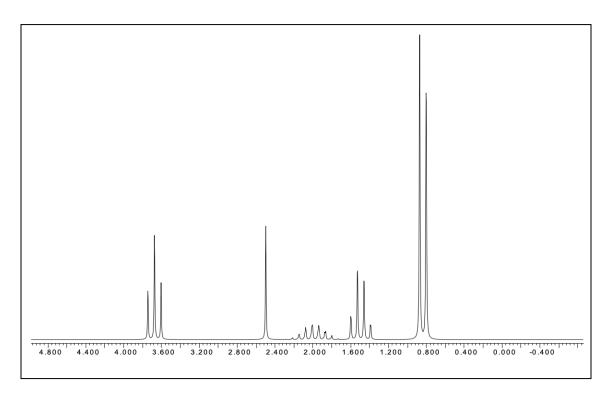

Session 17 Worksheet


Remember these:

Continuing with ¹H NMR

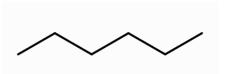
Given the following molecular formula and ¹H NMR spectra, propose a structure

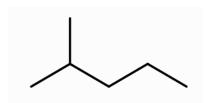
Given the molecular formula and signal report, propose a structure

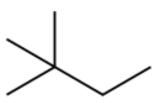
 $C_5H_{10}O$ δ = 0.95 ppm (6H, doublet)

 δ = 2.10 ppm (3H, singlet)

 δ = 2.43 ppm (1H, multiplet)

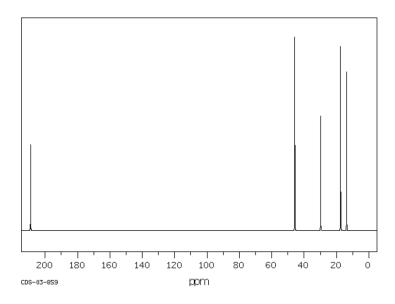

¹³C NMR:

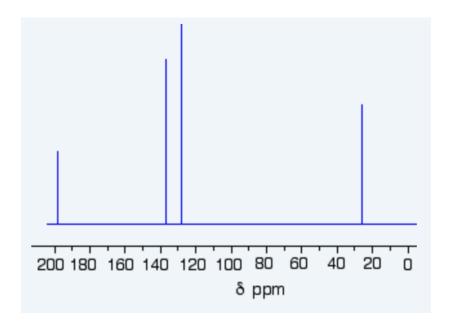

Instead of counting H environments, we're looking at ______


Carbon environments can also have ______

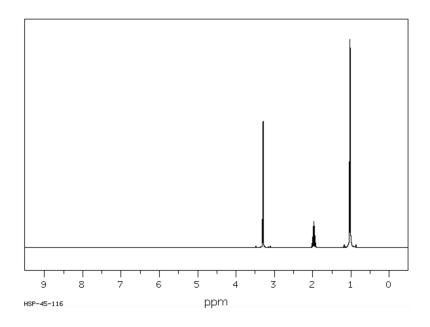
¹³C NMR signal do not have_____, so the signals on ¹³C NMR look like

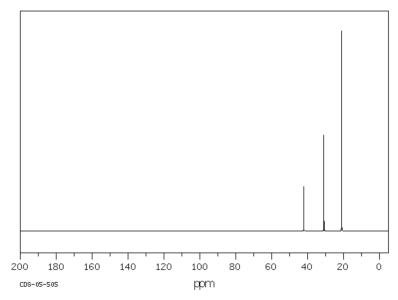
Label and determine the number of carbon environments in the compounds below:



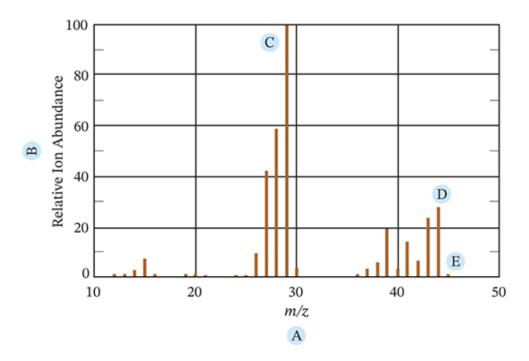


Given the molecular formula and ¹³C NMR spectra, propose a structure for the compound


C5H10O



C₄H₆O


While compiling some results for a paper, your assistant mixes up the ¹H NMR and ¹³C NMR spectra results for various compounds. They give you the following spectra, which they claim match 1-Bromo-2-methylpropane. Are they correct?

Mass Spectrometry:

Anatomy of a mass spec

A:

B:

C:

D:

E:

Forming the molecular ion

$$CH_3CH_2CH_3 + e^- \longrightarrow [CH_3CH_2CH_3]^{\frac{1}{2}} + 2e^-$$

Another visual/other considerations:

Radical cations from ionization of nonbonding or π electrons.

$$CH_3 - \overset{\cdot}{O}H$$
 $CH_3 - \overset{\cdot}{N} - CH_3$ $CH_2 \overset{\cdot+}{-} CHCH_2CH_3$
 CH_3

Methanol Trimethylamine 1-Butene

Fragmentation

Putting the reaction together

Alcohols have a peak at because of	
------------------------------------	--

Ionization potential:

TABLE 9.3		
Ionization Potentials of Selected Molecules		
Compound	Ionization Potential (eV)	
$CH_3(CH_2)_3NH_2\\$	8.7	
C_6H_6 (benzene)	9.2	
C_2H_4	10.5	
CH ₃ OH	10.8	
C_2H_6	11.5	
CH_4	12.7	