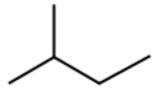

Exam 1 Test Prep

Concepts to Understand:

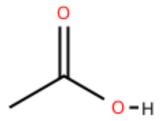
- Electronegativity
- Converting Condensed, Bond-line, and Dashed
- Formal Charge
- Constitutional Isomers
- Hybridization
- Functional Groups
- Degree of Substitution
- Intermolecular Forces
- Acids and Bases

Electronegativity


More electronegative atoms can _____ a ____ charge

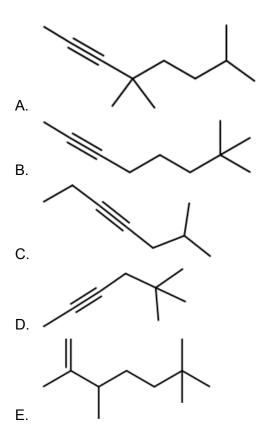
Structures

Condensed to Dash to bond line practice:


(CH₃)₂CHCH₂OH		
	H	
CH₃CH(OH)CH₂COOH		

What would be the condensed formula for the following compound?

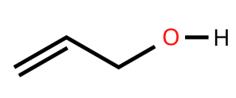
- A. CH₃CH(CH₃)CH₂CH₂
- B. CH₃CH₂CH₂CH₃
- C. CH(CH₃)CH₂CH₂CH₃
- D. $CH_3CH(CH_3)CH_2CH_3$
- $E. \quad CH_3CH_3(CH_3)CH_2CH_3$

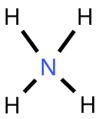

What would be the condensed formula for the following compound?

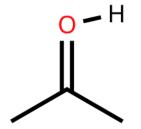
- A. (CH₃)₂CCOOH
- B. CH₃COOCH₃
- C. CH₃COOH
- D. CH₃CHOOH
- E. CH₂COOH

What is the correct bond-line structure of this compound?

$CH_3CC(CH_2)_3C(CH_3)_3$

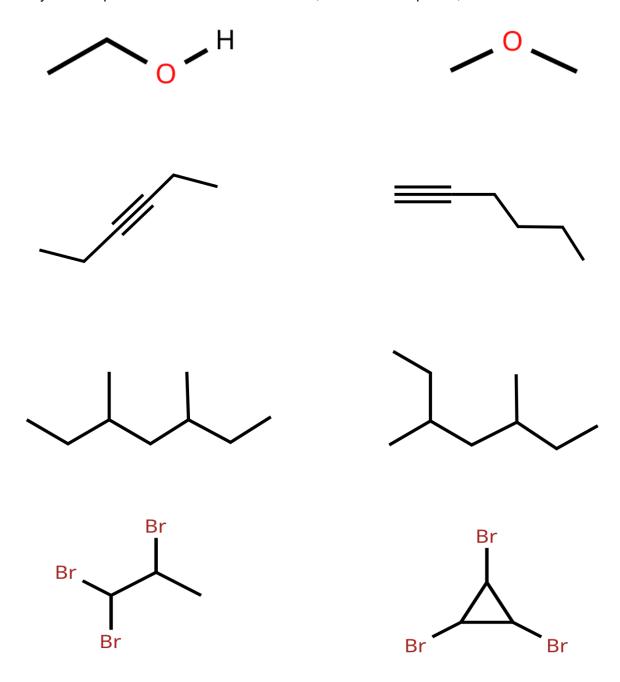



Formal Charge


Draw all hydrogens, lone pairs, and formal charges (if applicable)

Remember your formal charge calculations:

$$FC=V-N-rac{B}{2}$$
 FC = formal charge V = number of valence electrons N = number of nonbonding valence electrons B = total number of electrons shared in bonds



Constitutional Isomers

Identify the compounds as constitutional isomers, the same compound, or different:

Hybridization

How many Carbons, Pi, and Sigma bonds are in the following structures?

$$H_3C$$

Identify the hybridization of the central atom:

Carbon atoms have a face-to-face overlap AND a side-to-side overlap of orbitals, what kind of bond(s) and how many bonds were created?
What is the hybridization of the highlighted atom?
CH ₃ CH ₂ CH ₂ CH ₃
CH ₂ CH ₂

Functional Groups

I highly recommend making flashcards with their chemical formula, structure, and relative pKa values (excluding alkyl groups)

Alkyl Functional Groups

Methyl	Ethyl	
Propyl	Butyl	
Isopropyl	Phenyl	
Benzyl	Tert-butyl	

Alkyl Halide		Nitrile	
Alkane		Ketone	
Alkene		Aldehyde	
Alkyne		Carboxylic Acid	
Alcohol		Ether	
Aromatic/ Arene/ Benzene		Ester	
Amine		Amide	

Intermolecular Forces

Factors that	affect bp/mp:			
The more _		in a structure, the		the boiling point
Intermolecul	ar forces:			
	carbon chain;	the bp		
More	bonding; hig	her bp		
The more		in a structure, the		the melting point
When a mol	ecule can stack easi	ly the melting point is		
4				
gth	1.		Α	Ion-Dipole
raction Strength	2.		В	Hydrogen Bonding
eraction	3.		С	London Dispersion
ing Inte	4.		D	Ionic Bonds (crystal)
Increasing Intel	5.		Ε	Dipole-Dipole
_	6.		F	Covalent Bonding

Why would an ether have a lower boiling point than an alcohol?			
Which compound has the higher melting point and boiling point, why?			
CH3(CH2)3OH	(СНз)зСОН		

Identify all intermolecular forces in the compounds below and star their strongest one:

HO CH ₃	O=MnO- K+	H ₃ C CH ₃

Acids/Bases

Bronsted Lowry Acid:_____

Bronsted Lowry Base:_____

Lewis Acid: _____

Lewis Base:_____

What does the acronym ARIO mean? What is it looking at?

A

R

O

Identify the Nucleophile and Electrophile in the following acid/base reaction:

$$NH_2^-(aq) + H_2O(I) \rightarrow NH_3(aq) + OH^-(aq)$$

Would the reaction above favor the products or reactants?

Identify the most acidic proton:

Predict the equilibrium and identify the most acidic compound:

Would CH2ClCH2CO2H or CH3CH2CO2H be a stronger acid? Why?

You are given compounds with a pKa of 25, 44, and 51. What kind of molecule would you expect these to be (respectively)?

- A. Alkane, Alkene, Alkyne
- B. Ether, Alkyne, Alcohol
- C. Alkyne, Alkene, Alkane
- D. Carboxylic Acid, Alcohol, Ether
- E. Nitrile, Ester, Alkyne

What is the pKa range of an alcohol?

- A. 16-18
- B. 26-29
- C. 1-3
- D. 10
- E. 45-50

Which regions of this compound will be more acidic?

- A. Sulfur > Oxygen > Nitrogen
- B. Oxygen > Nitrogen > Sulfur
- C. Nitrogen > Oxygen> Sulfur
- D. Sulfur > Oxygen and Nitrogen
- E. Sulfur and Oxygen > Nitrogen