

Session 1 Worksheet

Vocab

Organic Chemistry:

Organic Compounds:

What makes carbon so special?

Inorganic Compounds:

Identify the organic compound below:

- A. BF_3
- B. CH_3COOH
- C. Na_2CO_3
- D. CO

Isotopes

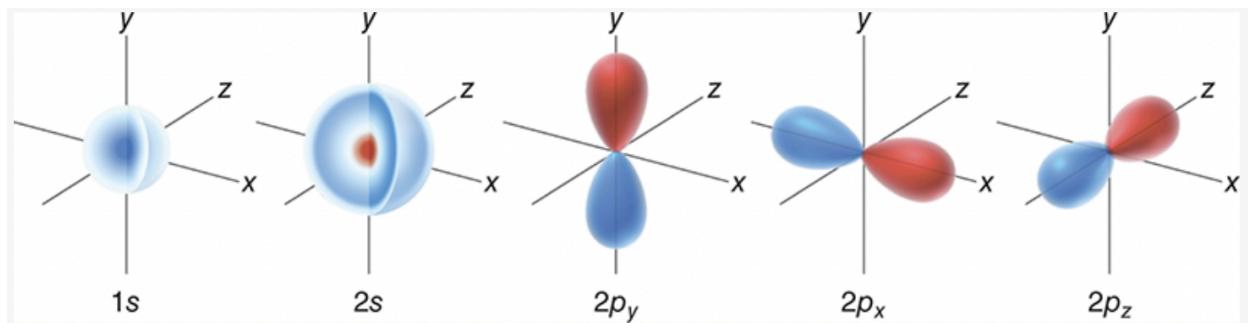
Number of Neutrons $= 12 - 6 = 6$	Number of Neutrons $= 13 - 6 = 7$	Number of Neutrons $= 14 - 6 = 8$
12 C 6	13 C 6	14 C 6

Valence Electrons

The _____ number tells you how many valence electrons the element has in the valence shell

Bonding

<i>Tetravalent</i>	<i>Trivalent</i>	<i>Divalent</i>	<i>Monovalent</i>
 Carbon generally forms four bonds.	 Nitrogen generally forms three bonds.	 Oxygen generally forms two bonds.	$\text{H} - \text{X} -$ (where X = F, Cl, Br, or I) Hydrogen and halogens generally form one bond.

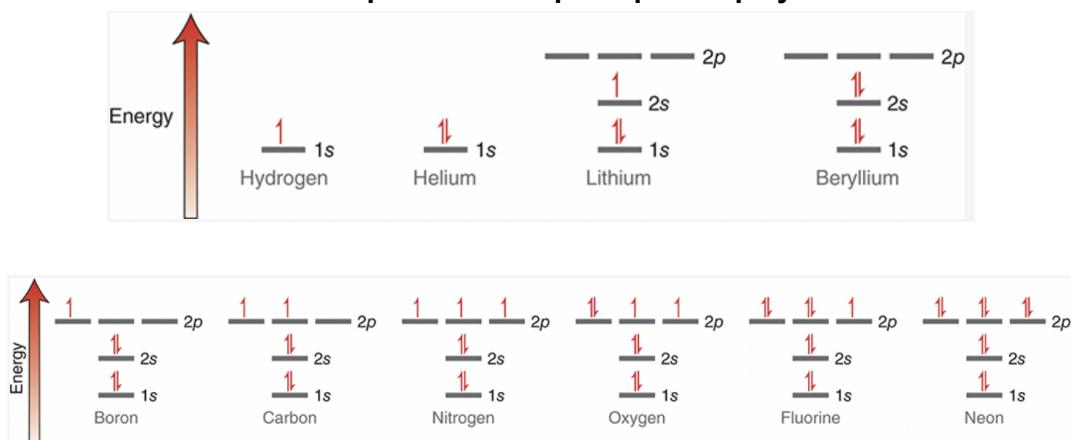

Ionic Bonding:

Covalent Bonding:

In the chart below, write down whether the bonding is ionic or covalent

Br_2	NaOH	CH_3	NaBr	$\text{C}(\text{CH}_3)_4$

Electron Orbitals


Following these three principles:

Aufbau's:

Pauli Exclusion:

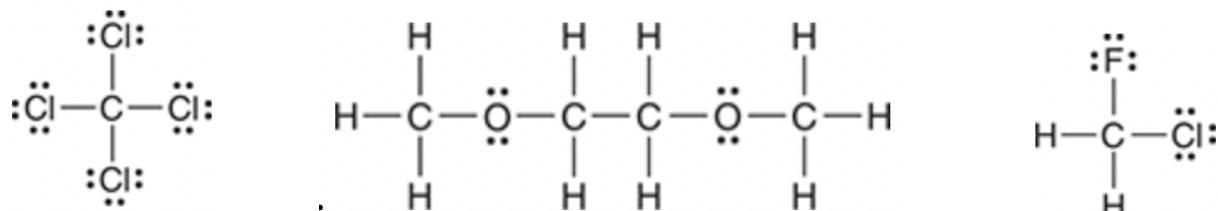
Hund's Rule:

Examples of these principles at play

Practice

Atom	Electron Configuration	Noble Gas Configuration
Ni		
Cl		
B		
K		

Electron Configuration	Element
$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$	
$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$	
$1s^2 2s^2 2p^6 3s^2 3p^6$	
$1s^2$	


Draw the orbital diagrams for Sodium and Aluminum, both in full orbital diagrams and noble gas.

Electronegativity

ELECTRONEGATIVITY VALUES OF SOME COMMON ELEMENTS							
Increasing electronegativity							
		H 2.1					
Li	Be	B	C	N	O	F	
1.0	1.5	2.0	2.5	3.0	3.5	4.0	
Na	Mg	Al	Si	P	S	Cl	
0.9	1.2	1.5	1.8	2.1	2.5	3.0	
K						Br	
0.8						2.8	

Induction causes the formation of _____ and _____ charges, symbolized by _____

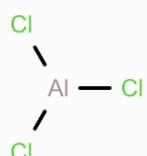
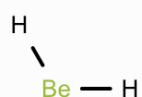
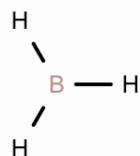
Label the inductive charges:

Heterolysis:

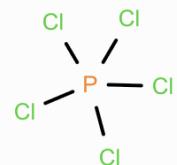
Homolysis:

Lewis Structures

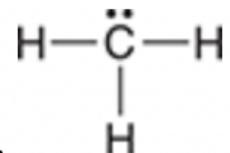
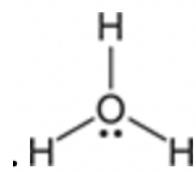
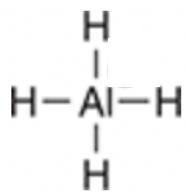
Draw the Lewis structures of:

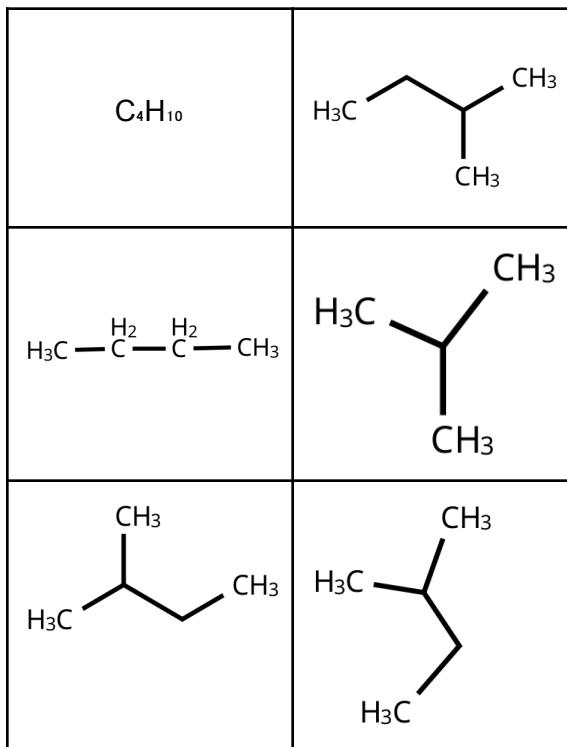
Common exceptions to the octet rule


1. Free radical (odd number of electrons)

2. Incomplete octets




3. Overfilled octets

Formal Charge


Formal Charge = #

Find the formal charge of the central atom:

Constitutional Isomers

What is the relationship of these molecules? Different, Same, or Constitutional Isomers?

