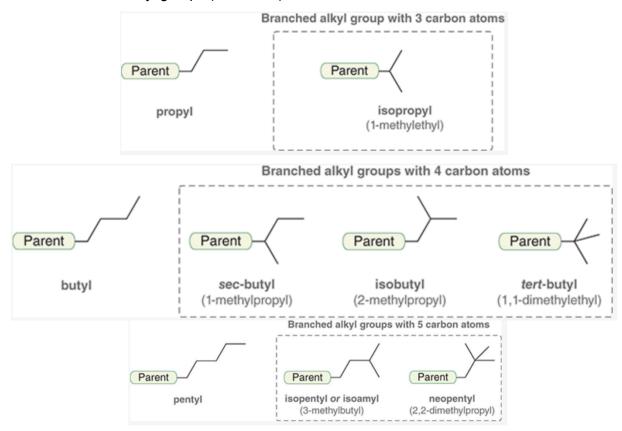
Exam 2 Test Prep

IUPAC Naming

Naming Alkanes:


Number of C atoms	Formula	Name
1	CH ₄	methane
2	C_2H_6	ethane
3	C ₃ H ₈	propane
4	C ₄ H ₁₀	butane
5	C ₅ H ₁₂	pentane
6	C ₆ H ₁₄	hexane
7	C ₇ H ₁₆	heptane
8	C ₈ H ₁₈	octane
9	C_9H_{20}	nonane
10	C ₁₀ H ₂₂	decane

2. Use ______ to indicate a ring

1.	If there is a competition of numbering chains of an equal length, number so that you get the
	amount of substituents

- To name alkyl substituents _____+______+
- 4. Number the parent chain and assign substituents the _____number possible according to IUPAC rules
- 5. To put names together, _____ substituents and combine using _____

Common names of alkyl groups (memorize)

When a substituent appears more than once in a molecule:

# of functional groups:	Prefix:
2	Di-
3	Tri-
4	Tetra-
5	Penta-
6	Неха-

Naming Alkyl Halides

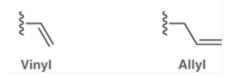
Halogen is treated as a ______

Naming Alcohols

- 1. Number the chain that includes the _____ group
- 2. Ends in _____
- 3. Alcohol gets_____(for the purposes of this class)

Naming Diols

- 1. Similar to alcohols just make sure you indicate the prefix of multiple alcohols
- 2. Remember the _____ of basic diols


Bicyclic Compounds

- 1. Find total
- 2. Use _____
- 3. Find
- 4. Order paths going_____

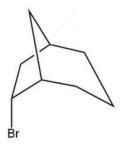
Naming Alkenes

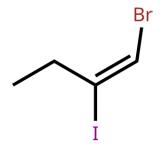
- 1. Ends in
- 2. Use the longest chain that _____
- 3. Pi bond is assigned _____

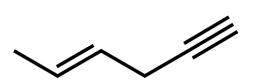
Allyl and Vinyl groups

Naming Alkynes

1. Use _____

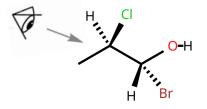

2. The triple bond should be assigned

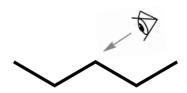

Alkenes and Alkynes: Which Takes Priority?


A molecule containing an alkene and alkyne with no higher-ranking substituents

- will be numbered so as to provide the lowest set of locants
 will be named so as to arrange the ene/yne alphabetically

Practice

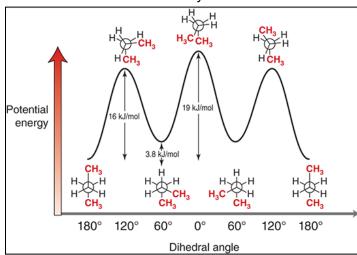

Newman Projections


A bird's eye view of the molecule!

Steps to creating a Newman Projection:

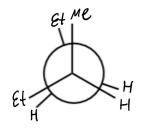
- 1.
- 2.
- 3.

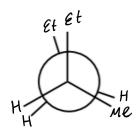
Practice: draw the Newman projection for the following bond line structures

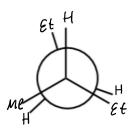


Practice: draw and name the bond line structure given the Newman projection

Stability of Newman projections:

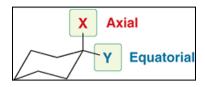

Conformation analysis of butane




Staggered Conformations:

Eclipsed Conformations:

Practice: Which of the projections is higher in energy? Lower?

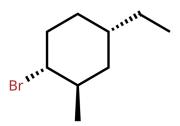


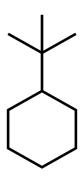
Conformations of Cycloalkanes

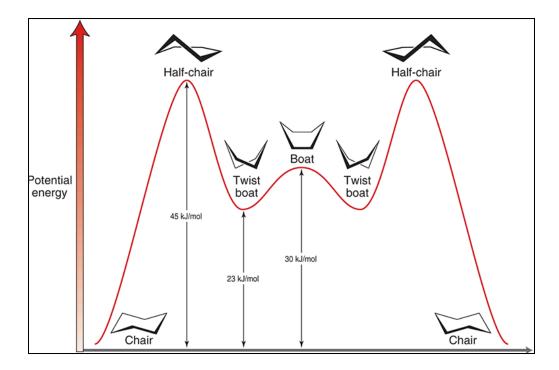
Axial and Equatorial:




Label the substituents as axial or equatorial



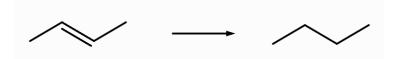




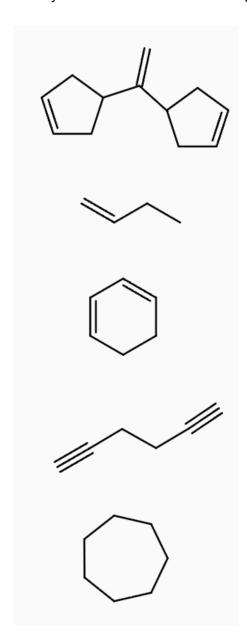
Draw the ring flip for the following compounds and identify which one is more/less stable:

Review: Stability of chair conformations:

Cis/Trans Isomerism

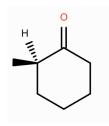

Identify if the following compounds are cis, trans, or nonisomeric (neither):

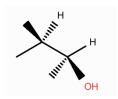
CH ₃ H CH ₃	Br Br	
H-O		
Cl	OH	


Index of Hydrogen Deficiency

Type of Bonding	IHD Value	
Single bond		
Pi bond		
Ring		

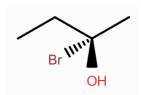
What is the name of the reaction that can increase the IHD value? What elements does it use?

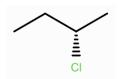

Identify the IHD value of the following compounds:



Stereochemistry

Are the following compounds chiral or achiral? If it is chiral, what is the configuration?

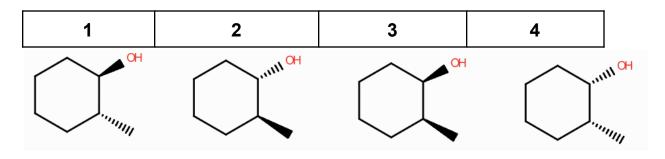




$$c=c=c$$
 CO_2OH

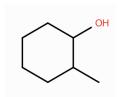
Chirality in IUPAC:

Name the structure and include the chirality:


Draw the strucuture given the name:
(1R, 2R)-1-bromo-2-chlorocyclobutane
(S)-1-bromo-1-chloropropane
(OD 00) 0 0 1: 11
(2R,3S)-2,3-dichloropentane

Racemic Mixture:	
Optically Pure:	
Enantiomers:	
Diasteriomers:	

T/F: Enantiomers have the same physical properties(boiling point, melting point and density), but diastereomers have different physical properties


- A. True
- B. False

Looking at the compounds below, identify the relationship of:



1+2			
1+/			

Calculating the maximum # of stereoisomers (be careful)

The method of determining which enantiomer was yielded in a reaction is:

- A. IR Spectroscopy
- B. H-NMR
- C. Polarimetry
- D. Blow it up
- E. C-NMR

Meso Compounds

They have _____

Their chiral centers are _____

Example

Identify the relationship of the following compounds as Meso, Enantiomer, Diasteriomer, or the same compound:

$$CH_3$$
 HO
 CH_3
 HO
 CO_2OH
 H_2N
 HO
 CO_2OH
 H_2N
 HO
 CO_3OH
 HO
 CO_3

Fischer Projections

Horizontal Line =

Vertical Line =

Example:

$$HO \xrightarrow{Et} H = HO \xrightarrow{Et} H$$
 $Me = HO \xrightarrow{Et} Me$

Assigning configuration of fischer projections

Draw one horizontal line as a_____

Draw one vertical line as a _____

Practice: Assigning the configuration of the Fischer projection:

$$CO_2H$$
 $HO - H$
 $H - OH$
 $HO - H$
 CH_2OH