Session 5 Worksheet

Curved Arrows (again)

- Shows movement of ______
- In acid-base chemistry (and nearly all reactions) a bond has to ______

 and electrons will go towards the more ______
- Bases _____ protons

Acids and Bases

Formation of Hydronium:

Bronsted Lowry Acid:

Bronsted Lowry Base:

EX:

Lewis Acid:

Lewis Base:

EX:

Practice drawing the mechanism and labeling acid/base:

Deprotonated:

Protonated:

Conj. Acid:

Conj. Base:	
*In reactions, the acidity of a compound is based on thebase *	of the conj.
Nucleophiles:	
Electrophiles:	
Introducing Carbocations/anions:	
Carbocation	
Carbocation	
^; C C O	
Carbanion	
Equilibrium (a traumatic flashback to chem 2)	

Equilibrium:

$$K_{
m eq} = rac{[{
m H_3O^+}][{
m A^-}]}{[{
m HA}][{
m H_2O}]}$$

Ka:

$$K_{
m a} = K_{
m eq} \, [{
m H}_2 {
m O}] = rac{[{
m H}_3 {
m O}^+][{
m A}^-]}{[{
m H}{
m A}]}$$

pKa=

Ka=

Main Idea: the reaction will depend on the concentration of _____

Which compound is more acidic? Given pKa

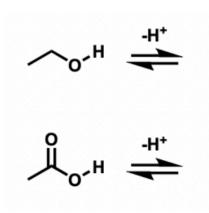
H — Br

$$pKa = -9$$
 $pKa = 4$
 $pKa = 3.2$
 $pKa = 25$

Most acidic to least acidic order:

ARIO

ARIO represents the key factors used to compare the ______ of a compound


1. ATOM

Atoms in the same row:

Atoms in the same column:

$$H^{O}H \xrightarrow{-H^{+}} \Theta_{OH}$$
 $H^{S}H \xrightarrow{-H^{+}} \Theta_{SH}$

2. RESONANCE

3. INDUCTION

Induction effect example:

$$pK_a = 4.75$$
 $pK_a = 2.87$ $pK_a = 1.25$ $pK_a = 0.70$

4. ORBITALS

Electrons in sp orbitals are stabilized by:

Which of the protons is more acidic?

Practice: which of the compounds is the stronger acid?

Practice: which is the stronger base?

Favoring Equlibrium:

To see if a reaction will favor the products of reactants, we compare ______ to predict this, because they are the biggest contributor of _____

Example: Determine if the products or reactants are favored in the following reaction:

$$\Theta_{O-H}$$
 $\mathring{\hspace{-1em} \downarrow}_{O}^{O}$ $\overset{}{\hspace{-1em} \longrightarrow}$ $\overset{}{\hspace{-1em} \downarrow}_{O}^{O}$

Draw the correct arrow pushing mechanism to predict the products below:

Weakest acid CH₃CH₃

<u>TABLE 3.1</u>					
Relative Strength of Selected Acids and Their Conjugate Bases					
	Acid	Approximate pK_a	ConjugateBase		
Strongest acid	HSbF_6	< -12	SbF_6^-	Weakest base	
	ні	-10	I-		
	$\mathrm{H}_2\mathrm{SO}_4$	-9	HSO_4^-		
	HBr	-9	Br^-		
	HCl	-7	C1 ⁻		
	$\mathrm{C_6H_5SO_3H}$	-6.5	$\mathrm{C_6H_5SO_3^-}$		
	$(\mathrm{CH_3})_2\mathrm{\overset{+}{O}H}$	-3.8	$(\mathrm{CH_3})_2\mathrm{O}$		
	$(CH_3)_2C = \overset{+}{O}H$	-2.9	(CH ₃) ₂ C=O	Increasing base strength	
	$\mathrm{CH_3} \overset{+}{\mathrm{OH}_2}$	-2.5	CH ₃ OH		
	HNO_3	-1.4	H_2O		
д	$\mathrm{H_{3}O^{+}}$	0.0	NO_3^-		
E E	$\mathrm{CF_{3}CO_{2}H}$	0.18	$\mathrm{CF_3CO}_2^-$		
tre	HF	3.2	\mathbf{F}^{-}		
Increasing acid strength	$\mathrm{C_6H_5CO_2H}$	4.21	$\mathrm{C_6H_5CO_2^-}$		
	$\mathrm{C_6H_5NH_3^+}$	4.63	$\mathrm{C_6H_5NH_2}$		
	$\mathrm{CH_{3}CO_{2}H}$	4.75	$\mathrm{CH_3CO}_2^-$		
	$\mathrm{H_{2}CO_{3}}$	6.35	HCO_3^-		
	$\mathrm{CH_{3}COCH_{2}COCH_{3}}$	9.0	$\mathrm{CH_3CO\overline{C}HCOCH_3}$		
	$\mathrm{NH_4^+}$	9.2	NH_3		
	${ m C_6H_5OH}$	9.9	$\mathrm{C_6H_5O^-}$		
	HCO_3^-	10.2	CO_3^{2-}		
	$\mathrm{CH_3NH_3^+}$	10.6	$\mathrm{CH_3NH_2}$		
	H_2O	14.0	HO ⁻		
	$\mathrm{CH_{3}CH_{2}OH}$	16	$\mathrm{CH_{3}CH_{2}O^{-}}$		
	$(CH_3)_3COH$	18	$(\mathrm{CH_3})_3\mathrm{CO}^-$		
	$\mathrm{CH_{3}COCH_{3}}$	19.2	$^-\mathrm{CH_2COCH_3}$		
	$HC \equiv CH$	25	$HC \equiv C^-$		
	$\mathrm{C_6H_5NH_2}$	31	$\mathrm{C_6H_5NH^-}$		
	H_2	35	H-		
	$(i-Pr)_2NH$	36	$(i-Pr)_2N^-$		
	NH_3	38	$-\mathrm{NH}_2$		
	CH ₂ =CH ₂	44	CH ₂ =CH ⁻		

50

 $\mathrm{CH_{3}CH_{2}^{-}}$

Strongest base