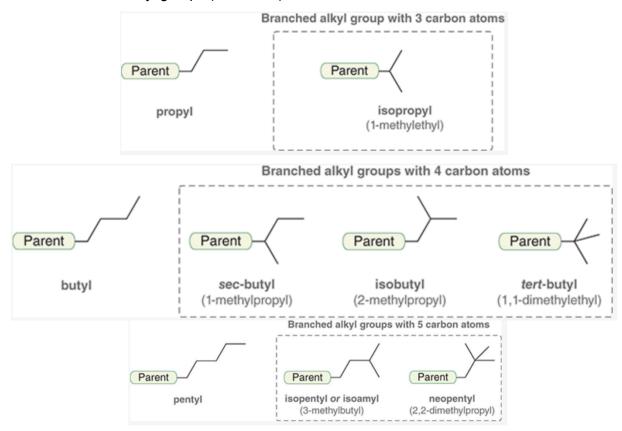
Exam 2 Test Prep


IUPAC Naming

Naming Alkanes:

CAPACINES CALCUCATE		
Number of C atoms	Formula	Name
1	CH ₄	methane
2	C_2H_6	ethane
3	C ₃ H ₈	propane
4	C_4H_{10}	butane
5	C ₅ H ₁₂	pentane
6	C ₆ H ₁₄	hexane
7	C ₇ H ₁₆	heptane
8	C ₈ H ₁₈	octane
9	C_9H_{20}	nonane
10	$C_{10}H_{22}$	decane

- If there is a competition of numbering chains of an equal length, number so that you get the _____amount of substituents
- 2. Use <u>lyllo</u> to indicate a ring
- 3. To name alkyl substituents Prefix + yl
- 5. To put names together, <u>Al Phabetize</u> substituents and combine using <u>and</u> —

Common names of alkyl groups (memorize)

When a substituent appears more than once in a molecule:

# of functional groups:	Prefix:
2	Di-
3	Tri-
4	Tetra-
5	Penta-
6	Неха-

Naming Alkyl Halides

Halogen is treated as a _____

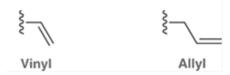
Naming Alcohols

- 2. Ends in _______
- 3. Alcohol gets (for the purposes of this class)

Naming Diols

1. Similar to alcohols just make sure you indicate the prefix of multiple alcohols

2. Remember the <u>Common nomes</u> of basic diols


Bicyclic Compounds

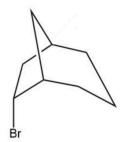
- 1. Find total # of Carbons
- 2. Use bicyclo
- 3. Find bridge heads / paths
- 4. Order paths going | argest -> Smallest #

Naming Alkenes

- 1. Ends in $-\ell N \ell$
- 2. Use the longest chain that $\underline{INCludes}$ C=C
- 3. Pi bond is assigned __lowest #___

Allyl and Vinyl groups

Naming Alkynes

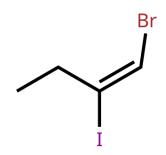

- 2. The triple bond should be assigned ______ (Wrest #

Alkenes and Alkynes: Which Takes Priority?

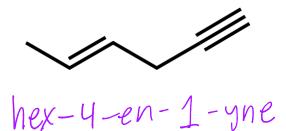
A molecule containing an alkene and alkyne with no higher-ranking substituents

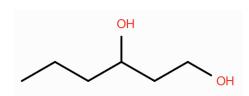
- · will be numbered so as to provide the lowest set of locants
- · will be named so as to arrange the ene/yne alphabetically

Practice



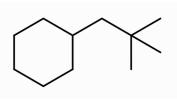
6-bromo bicyclo [3.2.1] octane


5-isopropyl-2-methyloctane


6-brono-4-ethyl-3-methyloctane

4-methyl cyclohex-1-ene

1-bromo-2-jodo but-1-ene



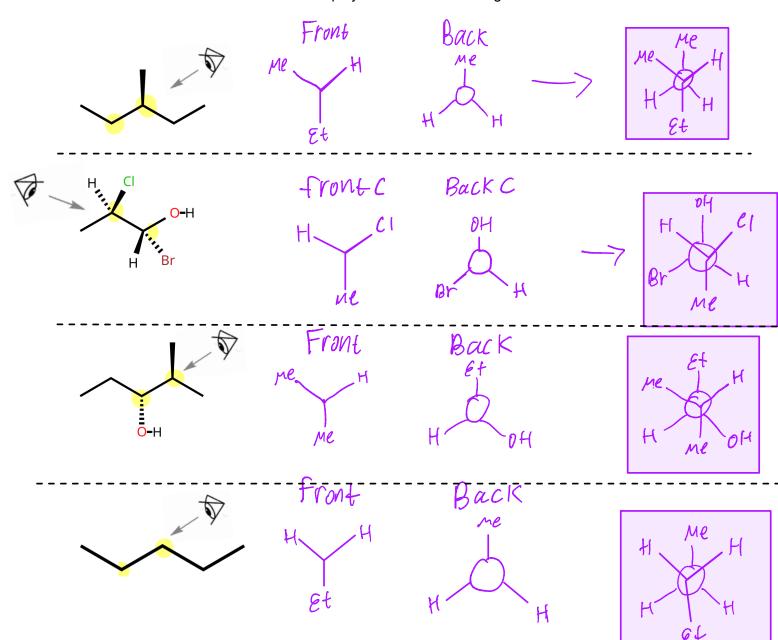
1,3-hexane diol

2

hexane-1,3-diol

heo pentyl cyclohexane

(2,2-dimethylpropyl) Cyclohexane


Newman Projections

A bird's eye view of the molecule!

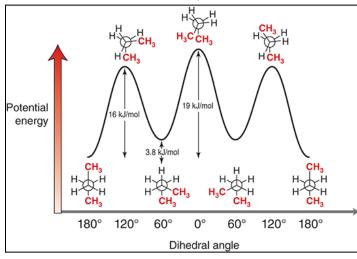
Steps to creating a Newman Projection:

- 1. ID groups on the front Carbon
- 2. ID groups on the back carbon
- 3. Combine

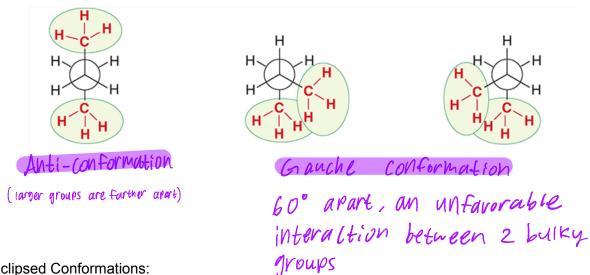
Practice: draw the Newman projection for the following bond line structures

Practice: draw and name the bond line structure given the Newman projection

3-ethyl-2.3-dimethyl pentane


Methyl cyclohexane

2,3,4-trimethy/pentane


HO
$$\frac{CH_3}{H}$$
 CI $\frac{CI}{EOH}$ (25,3R) -3-chloro-2-butanol

Stability of Newman projections:

Conformation analysis of butane

Staggered Conformations:

Eclipsed Conformations:

Practice: Which of the projections is higher in energy? Lower?

H

H

$$et$$

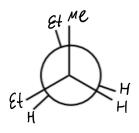
H

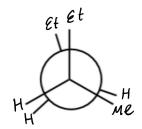
 et

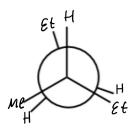
H

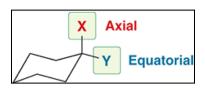
 et

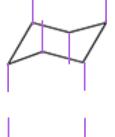
H

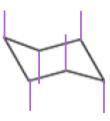

 et
 et


H


 et
 et

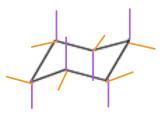


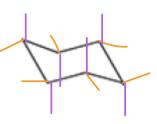


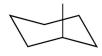


Conformations of Cycloalkanes

Axial and Equatorial:



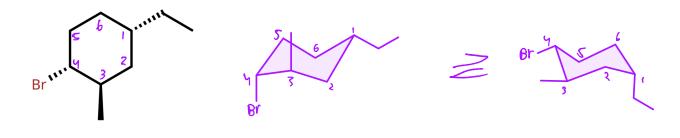


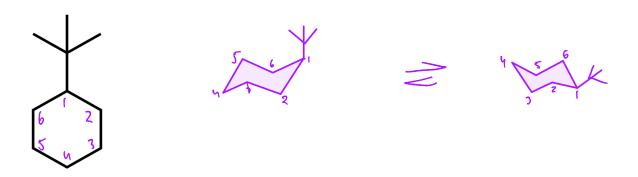


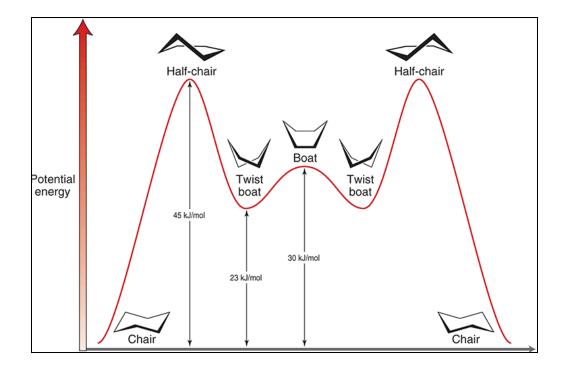
Label the substituents as axial or equatorial

Д

A


6




A

Draw the ring flip for the following compounds and identify which one is more/less stable:

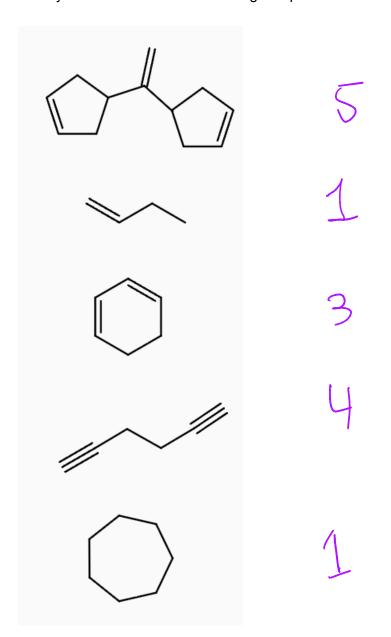
Review: Stability of chair conformations:

Cis/Trans Isomerism

Identify if the following compounds are cis, trans, or nonisomeric (neither):

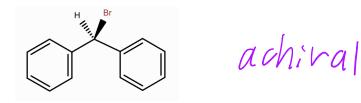
CH ₃ H H CH ₃	trans	Br Br	Cis
	trans		non-
Cl	Non-	OH	Erans

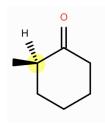
Index of Hydrogen Deficiency

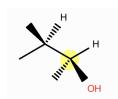

Type of Bonding	IHD Value	
Single bond	0	
Pi bond	1	
Ring	1	

What is the name of the reaction that can increase the IHD value? What elements does it use?

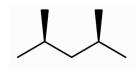
Hydrogenatton


$$\frac{H_2}{Pt}$$

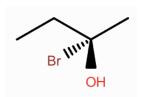

Identify the IHD value of the following compounds:

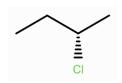

Stereochemistry

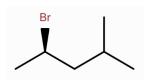
Are the following compounds chiral or achiral? If it is chiral, what is the configuration?

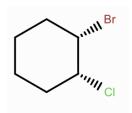


chival, R

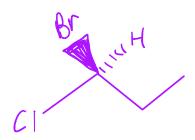

chiral, S



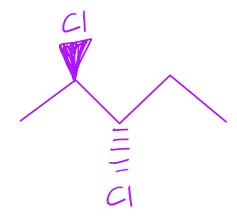

achival (meso)


Chirality in IUPAC:

Name the structure and include the chirality:



Draw the strucuture given the name:


(1R, 2R)-1-bromo-2-chlorocyclobutane

(S)-1-bromo-1-chloropropane

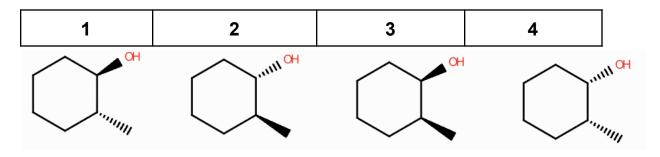
(2R,3S)-2,3-dichloropentane

Racemic Mixture:

Contains equal amounts of both enantiomers
Optically Pure:

A Solution of 1 enantiomer

Enantiomers:


· non-superinposable mirror images

Diasteriomers:

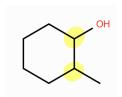
o non-superimposable not mirror images

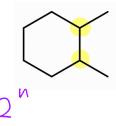
T/F: Enantiomers have the same physical properties(boiling point, melting point and density), but diastereomers have different physical properties

Looking at the compounds below, identify the relationship of:

1+2: enantiomers

1+3: diastereomers


1+4: diastereomers


2+3: diastereomers

2+4: diastereomers

3+4: enantiomers

Calculating the maximum # of stereoisomers (be careful)

$$2^2 = \overline{4}$$

this compound will have a structure whereflectional symmetry, so the actual # of stereoisomers is (3)

The method of determining which enantiomer was yielded in a reaction is:

- A. IR Spectroscopy
- B. H-NMR
- C. Polarimetry
- D. Blow it up
- E. C-NMR

Meso Compounds

They have reflectional Symmetry

Their chiral centers are inverted (R/S)

Example

Identify the relationship of the following compounds as Meso, Enantiomer, Diasteriomer, or the same compound:

Fischer Projections

Horizontal Line = Wedge

Vertical Line = dash

Example:

$$HO \longrightarrow HO \longrightarrow HO \longrightarrow HO \longrightarrow HO$$
Me Me
Me

Assigning configuration of fischer projections

Draw one horizontal line as a Wedge

Practice: Assigning the configuration of the Fischer projection:

$$H_3C$$
 H_3C
 CH_2CH_3