Exam 3 Test Prep

Substitution and Elimination

Breaking down each reaction:

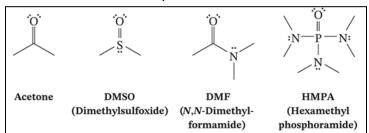
Sn2

E2

Sn1

What is said to be the rate-determining step in an Sn1 or E1 reaction? (Circle the 2 answers)

- A. Loss of a leaving group
- B. Backside attack
- C. Carbocation rearrangement
- D. Formation of a carbocation
- E. Mixing the solution of chemicals

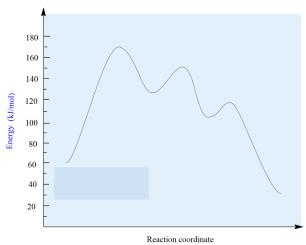

T/F: Rate-determining steps are typically very quick

Solvents

Generally, polar aprotic goes with _____and polar protic goes with _____

On of the major exceptions is _____with ____

Polar Aprotic Solvents


Polar Protic Solvents

Determ	inina	Nucleo	philicity
Determ		1100100	princity

Charge: more	charge,	nucelophile	
Sterics: smaller the nu	Iceophile the	it is	
Electronegativity: In po	olar protic solvents, EN	N and nulceophilicity are	
<u>Polarizability:</u> The abili solvation	ty of a very large aton	n to	, regardless of
Is -SH or -OH a better	nulceophile?		
Determining Bascity			
Acid-base principle: Lo	ook at the		
Nulceophilicity parallel	s with basicity for com	npounds with the	
$RO^{-} > HO^{-} \gg$	$RCO_2^- > ROH$	> H ₂ O	
Nulceophilicity is not p	arallel to basicity for o	compounds with	
$HS^- > N \Longrightarrow C^-$	$> I^{-} > HO^{-}$		
Identify the better nucl	eophile:		
a. NaSH vs. H2S			
c. CH3O (In methanol)	vs. CH3O (in DMSO))	
d. Ethoxide CH3CH2C)- vs. tert-butoxide (Ch	H3)3O-	
e. HO- vs. Cl-			

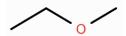
E & S Practice

What is true about the free energy diagram below?

- A. The reaction is an endergonic reaction, meaning Gibbs free energy is less than 0
- B. The reaction is most likely an Sn2 reaction, which is unimolecular and exergonic
- C. The reaction is a competing reaction between E2 and Sn2, both are endergonic, where Gibbs free energy is greater than 0
- D. The reaction is most likely Sn1, which is exergonic, where Gibbs free energy is less than 0
- E. The reaction is E1, an exergonic reaction, meaning Gibbs free energy is greater than 0

Give the major product and identify the reaction below:

$$\begin{array}{c} \text{Br} \\ & \xrightarrow{\text{heat}} \end{array}$$


$$\begin{array}{ccc} & & & \text{NaI} \\ & & & \xrightarrow{\text{acetone}} \end{array}$$

Reaction Scenarios

1. Emily wants to make an ether compound using 1-bromo-1-methylcyclopentane. What kind of reagents would be good for this?

From the previous problem above, Emily mixes the reagents and heats them up in an Erlenmeyer flask. When she is determining her final product, she notices she isn't getting the desired product. How can she change her reaction conditions to get the product she wants?

2. Harvey is working on synthesizing a new drug. One of his reactions is taking chloroethane, sodium methoxide, and turning it into the compound below

Unfortunately, he is completely out of his stash of aprotic solvents. Can Harvey still complete his reaction? If so, how can he do it?

E&S Charts

	Regiochemistry	Stereochemistry
Sn2		
E2		
Sn1		
E1		

Strong base	Strong base	Weak base	Weak base		
Weak nucleophile	Strong nucleophile	Strong nucleophile	Weak nucleophile		
DBN DBU	HO MeO EtO	I [⊝] Br [⊝] Cl [⊝] RS [⊝] HS [⊝] RSH H ₂ S	H ₂ O MeOH EtOH		

	Strong base Weak nucleophile	Strong base Strong nucleophile			Weak base Strong nucleophile	Weak base Weak nucleophile	
1 °	E2	E2	S _N 2		S _N 2	\bigwedge	\wedge
2 °	E2		E2	S _N 2	S _N 2	\bigwedge	\wedge
3°	E2	E2			S _N 1	S _N 1	E1

Alkenes

(E):

(Z):

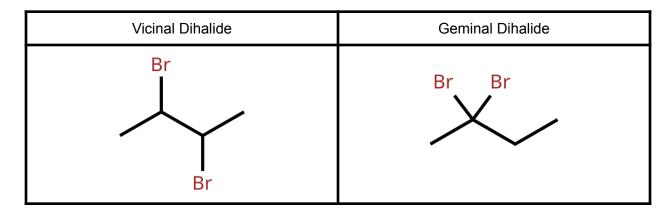
Designate E or Z for the compounds below:

Name the compounds with E and Z configuration in mind:

Predict the dehydration products below:

Alkynes

Acidity of alkynes

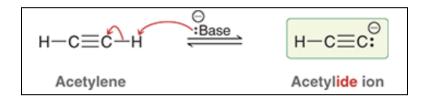

Ethane Ethylene Acetylene

H
H
H
H
H
H
H
H
$$pK_a = 50$$

Ethylene Acetylene

 $H = H = H$
 $H = H$

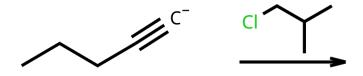
Synthesizing alkynes via dehydrohalogenation



Mechanism:

Vicinal Dihalide:

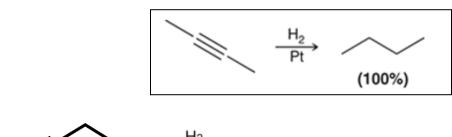
Geminal Dihalide:

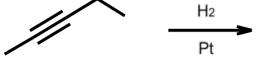

Acetylide Anion:

Synthesis:

Using acetylide ions in reactions

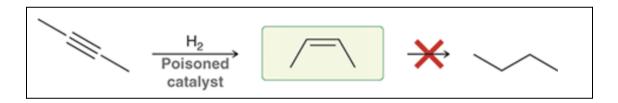
Syn and Anti-Addition

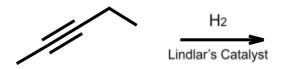

Syn-Addition	Anti-Addition		
H L	H I		
$\begin{array}{ c c c c } \hline & & \\ \hline & & \\ \hline \end{array}$			
OR	H OR		


Reduction via catalytic hydrogenation

Similar to converting an alkene to an alkane, we can convert an alkyne to an alkane

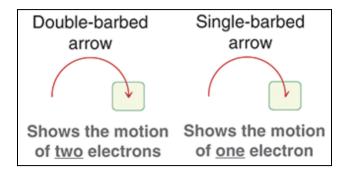
Via

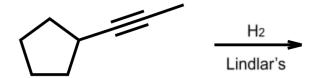

Uses _____ addition


Using a poisoned catalyst

Under regular hydrogenation, it is difficult to isolate the cis-alkene intermediate. To stop the reaction at a cis-alkene we use a ______ (aka Lindlar's Catalyst or P-2)

Lindlar's Catalyst:


P-2 Catalyst:


Dissolving Metal Reduction

Alkyne to _____ addition

PSA: Pay attention to the arrows being used!

Practice

